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Abstract

Dyrda and Prucnal gave a Hilbert-style axiomatization for the {∧,∨}-fragment of classical

propositional logic. Their proof of completeness follows a different approach to the standard

one proving the completeness of classical propositional logic. In this note, we present an

alternative proof of Dyrda and Prucnal’s result following the standard arguments which

prove the completeness of classical propositional logic.
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1. Introduction

It is well-known that classical propositional logic CL can be presented syntactically in

several ways, among them a Hilbert-style calculus. Let us denote the resulting syntactic

consequence by ⊢CL. The standard completeness theorem for classical logic is the statement

that for all Γ ∪ {φ} ⊆ Fm,

Γ ⊢CL φ ⇐⇒ Γ ⊨2 φ,

where 2 is the two-element Boolean algebra. The standard completeness proof is as follows.

The implication⇒, the soundness theorem, is proved by what is normally qualified as routine

checking. On the other hand, the implication ⇐ is proved by contraposition. One assumes

that Γ ⊬CL φ. Then, by the Lindenbaum’s Lemma there exists a maximally consistent

theory ∆ such that Γ ⊆ ∆ and φ /∈ ∆. Now, one defines the function h : Fm → 2 by

putting, for any α ∈ Fm, hα = 1 if and only if α ∈ ∆. Next, using several properties of
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maximally consistent theories, one shows that h is actually a homomorphism. Thus, this

homomorphism is such that h(Γ) ⊆ {1} and hφ ̸= 1. Hence, it follows that Γ ⊭2 φ.

The {∧,∨}-fragment of classical propositional logic is defined by the matrix ⟨2, {1}⟩,
where 2 = ⟨{0, 1},∧,∨⟩ is the two-element distributive lattice. This fragment was stud-

ied by different authors, for instance [2, 4, 7, 5]. In [2] Dyrda and Prucnal presented a

Hilbert-style axiomatization for the {∧,∨}-fragment of classical logic. The argument used

to prove this completeness result does not follow the classical arguments used in the standard

completeness theorem of classical logic with respect to some of its equivalent Hilbert-style

axiomatizations.

We will try to explain shortly the arguments given in [2] by Dyrda and Prucnal to prove

the completeness theorem. Let ⊢DP be the syntactic consequence defined by the Hilbert-style

calculus proposed in [2]. The implication Γ ⊨2 φ =⇒ Γ ⊢DP φ is proved by contraposition.

It is assumed that Γ ⊬DP φ. Thus, they show that there is a finite set U of formulas built

from the variables appearing in φ and the connective ∨ such that φ ⊢DP χ ⇐⇒ U ⊢DP χ,

for all χ ∈ Fm. So, there is α ∈ U such that Γ ⊬DP α. It is also proved that there is a set U1

of formulas built from variables and ∨ such that Γ ⊢DP χ ⇐⇒ U1 ⊢DP χ, for all formula χ.

Then, there exists a set Y1 of variables such that Y1 ⊬DP α and Y1 ⊢DP γ, for all γ ∈ Γ. Now

they define the map v : Var → {0, 1} as follows: v(p) = 1 ⇐⇒ p ∈ Y1. Let v̂ : Fm → 2 be

the homomorphism extending the map v. Then, it is verified that v̂(Γ) ⊆ {1} and v̂(φ) ̸= 1.

Hence, Γ ⊭2 φ. We refer the reader to [2] for the details missing.

Our aim is to present a proof of the completeness between the {∧,∨}-fragment of classical

logic and the Hilbert-style presentation given in [2] following the usual arguments which

prove the standard completeness of classical logic defined by the matrix ⟨2, {1}⟩ and some

of its Hilbert-style axiomatizations.

2. The Hilbert-style axiomatization and completeness for the {∧,∨}-fragment
of classical logic

In this note we follow the usual concepts and notations of algebraic logic. Our main

reference for algebraic logic is [3].

Let L = {∧,∨} be an algebraic language of type (2, 2), and Fm the algebra of formulas

over this language and a denumerable set of variables. The {∧,∨}-fragment of classical

propositional logic, denoted by S∧,∨ = ⟨Fm,⊨2⟩, is defined by: for all Γ, {φ} ⊆ Fm,

Γ ⊨2 φ ⇐⇒ ∀h ∈ Hom(Fm,2), h(Γ) ⊆ {1} implies h(φ) = 1.
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Now we introduce the Hilbert-style presentation given by Dyrda and Prucnal in [2]. Let

SDP = ⟨Fm,⊢DP⟩ be the propositional logic defined in the usual “Hilbert-style” with no

axioms and with the following rules of inference:

(R1) φ ∧ ψ ⊢ φ

(R2) φ ∧ ψ ⊢ ψ ∧ φ

(R3) φ, ψ ⊢ φ ∧ ψ

(R4) φ ⊢ φ ∨ ψ

(R5) φ ∨ ψ ⊢ ψ ∨ φ

(R6) φ ∨ (φ ∨ ψ) ⊢ φ ∨ ψ

(R7) φ ∨ (ψ ∨ χ) ⊢ (φ ∨ ψ) ∨ χ

(R8) (φ ∨ ψ) ∨ χ ⊢ φ ∨ (ψ ∨ χ)

(R9) φ ∨ (ψ ∧ χ) ⊢ (φ ∨ ψ) ∧ (φ ∨ χ)

(R10) (φ ∨ ψ) ∧ (φ ∨ χ) ⊢ φ ∨ (ψ ∧ χ)

(R11) φ ∧ (ψ ∨ χ) ⊢ (φ ∧ ψ) ∨ (φ ∧ χ)

(R12) φ ∨ φ ⊢ φ

It is known that rules (R6), (R8) and (R11) are derivable from the others, see [1, 4].

Our aim is to show that the logics S∧,∨ and SDP coincide following the standard arguments

proving that the classical logic, defined by some Hilbert-style presentation, is complete with

respect to the matrix ⟨2, {1}⟩ (see for instance [3, pp. 72–73]). To this end, we need to

prove that the logic SDP satisfies the Proof by Cases Principle (see Proposition 2.3). First

we need the following property of the logic SDP = ⟨Fm,⊢DP⟩.

Proposition 2.1. Let φ, ψ, χ ∈ Fm. If φ ⊢DP ψ, then φ ∨ χ ⊢DP ψ ∨ χ.

Proof. Assume φ ⊢DP ψ. In order to prove that ψ ∨χ is derivable from φ∨χ, it is sufficient

to show that {γ ∨ χ : γ ∈ Γ} ⊢DP α ∨ χ for each rule of inference Γ ⊢ α defining SDP.

(R1’) (α ∧ β) ∨ χ ⊢DP α ∨ χ:
1. (α ∧ β) ∨ χ (Hyp)

2. (χ ∨ α) ∧ (χ ∨ β) 1., (R5), (R9)

3. α ∨ χ 2., (R1), (R5)

(R2’) (α ∧ β) ∨ χ ⊢DP (β ∧ α) ∨ χ:
1. (α ∧ β) ∨ χ (Hyp)

2. (χ ∨ α) ∧ (χ ∨ β) 1., (R5), (R9)

3. χ ∨ α 2., (R1)

4. χ ∨ β 2., (R2), (R1)

5. (χ ∨ β) ∧ (χ ∨ α) 4., 3., (R3)

6. (β ∧ α) ∨ χ 5., (R10), (R5)

(R3’) α ∨ χ, β ∨ χ ⊢DP (α ∧ β) ∨ χ:
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1. α ∨ χ, β ∨ χ (Hyp)

2. χ ∨ α, χ ∨ β 1., (R5)

3. (χ ∨ α) ∧ (χ ∨ β) 2., (R3)

4. (α ∧ β) ∨ χ 3., (R10), (R5)

(R4’) α ∨ χ ⊢DP (α ∨ β) ∨ χ:
1. α ∨ χ (Hyp)

2. (χ ∨ α) ∨ β 1., (R5), (R4)

3. (α ∨ β) ∨ χ 2., (R8), (R5)

(Aux1) α ∨ (β ∨ α) ⊢DP β ∨ α:
1. α ∨ (β ∨ α) (Hyp)

2. α ∨ (α ∨ β) 1., (R7), (R5)

3. β ∨ α 2., (R6), (R5)

(R5’) (α ∨ β) ∨ χ ⊢DP (β ∨ α) ∨ χ:
1. (α ∨ β) ∨ χ (Hyp)

2. ((α ∨ β) ∨ α) ∨ χ 1., (R4′)

3. α ∨ (β ∨ (α ∨ χ)) 2., (R8), (R8)

4. (α ∨ χ) ∨ (β ∨ (α ∨ χ)) 3.(R4′)

5. β ∨ (α ∨ χ) 4., (Aux1)

6. (β ∨ α) ∨ χ 5., (R7)

(R7’) (α ∨ (β ∨ γ)) ∨ χ ⊢DP ((α ∨ β) ∨ γ) ∨ χ:
1. (α ∨ (β ∨ γ)) ∨ χ (Hyp)

2. α ∨ ((β ∨ γ) ∨ χ) 1., (R8)

3. (α ∨ β) ∨ ((β ∨ γ) ∨ χ) 2., (R4′)

4. χ ∨ ((α ∨ β) ∨ (β ∨ γ)) 3., (R7), (R5)

5. (χ ∨ (α ∨ β)) ∨ (β ∨ γ) 4., (R7)

6. (β ∨ γ) ∨ (χ ∨ (α ∨ β)) 5., (R5)

7. (γ ∨ β) ∨ (χ ∨ (α ∨ β)) 6., (R5′)

8. (χ ∨ (α ∨ β)) ∨ (γ ∨ β) 7., (R5)

9. β ∨ ((χ ∨ (α ∨ β)) ∨ γ) 8., (R7), (R5)

10. (β ∨ α) ∨ ((χ ∨ (α ∨ β)) ∨ γ) 9., (R4′)

11. (α ∨ β) ∨ ((χ ∨ (α ∨ β)) ∨ γ) 10., (R5′)

12. ((α ∨ β) ∨ χ) ∨ ((χ ∨ (α ∨ β)) ∨ γ) 11., (R4′)

13. (χ ∨ (α ∨ β)) ∨ ((χ ∨ (α ∨ β)) ∨ γ) 12., (R5′)

14. (χ ∨ (α ∨ β)) ∨ γ 13., (R6)

15. ((α ∨ β) ∨ γ) ∨ χ 14., (R8), (R5)
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(R9’) (α ∨ (β ∧ γ)) ∨ χ ⊢DP ((α ∨ β) ∧ (α ∨ γ)) ∨ χ:
1. (α ∨ (β ∧ γ)) ∨ χ (Hyp)

2. (χ ∨ α) ∨ (β ∧ γ) 1., (R5), (R7)

3. ((χ ∨ α) ∨ β) ∧ ((χ ∨ α) ∨ γ) 2., (R9)

4. (χ ∨ α) ∨ β 3., (R1)

5. (χ ∨ α) ∨ γ 3., (R5), (R1)

6. χ ∨ (α ∨ β) 4., (R8)

7. χ ∨ (α ∨ γ) 5., (R8)

8. (χ ∨ (α ∨ β)) ∧ (χ ∨ (α ∨ γ)) 6., 7., (R3)

9. χ ∨ ((α ∨ β) ∧ (α ∨ γ)) 8., (R10)

10. ((α ∨ β) ∧ (α ∨ γ)) ∨ χ 9., (R5)

(R10’) ((α ∨ β) ∧ (α ∨ γ)) ∨ χ ⊢DP (α ∨ (β ∧ γ)) ∨ χ:
1. ((α ∨ β) ∧ (α ∨ γ)) ∨ χ (Hyp)

2. (χ ∨ (α ∨ β)) ∧ (χ ∨ (α ∨ γ)) 1., (R5), (R9)

3. χ ∨ (α ∨ β) 2., (R1)

4. χ ∨ (α ∨ γ) 2., (R2), (R1)

5. (χ ∨ α) ∨ β 3., (R7)

6. (χ ∨ α) ∨ γ 4., (R7)

7. ((χ ∨ α) ∨ β) ∧ ((χ ∨ α) ∨ γ) 5., 6., (R3)

8. (χ ∨ α) ∨ (β ∧ γ) 7., (R10)

9. (α ∨ (β ∧ γ)) ∨ χ 8., (R8), (R5)

(R12’) (α ∨ α) ∨ χ ⊢DP α ∨ χ:
1. (α ∨ α) ∨ χ (Hyp)

2. α ∨ (α ∨ χ) 1., (R8)

3. α ∨ χ 2., (R6)

Corollary 2.2. Let Γ ∪ {φ, χ} ⊆ Fm. If Γ ⊢DP φ, then Γ ∨ χ ⊢DP φ ∨ χ, where Γ ∨ χ :=

{γ ∨ χ : γ ∈ Γ}.

Proof. It follows from the fact that the consequence relation ⊢DP is finitary, Proposition 2.1,

and by the rules of inferences.

Proposition 2.3. The logic SDP satisfies the Proof by Cases Principle. That is, for all

Γ ∪ {φ, ψ, χ} ⊆ Fm,

Γ, φ ⊢DP χ & Γ, ψ ⊢DP χ =⇒ Γ, φ ∨ ψ ⊢DP χ.

5



Proof. Since ⊢DP is finitary, it is sufficient to prove a weaker version of the Proof by Cases

Principle. We prove that

φ ⊢DP χ & ψ ⊢DP χ =⇒ φ ∨ ψ ⊢DP χ.

Assume that φ ⊢DP χ and ψ ⊢DP χ. By Proposition 2.1, we have that φ ∨ ψ ⊢DP χ ∨ ψ

and ψ ∨ χ ⊢DP χ ∨ χ. From rules (R5) and (R12), we obtain that χ ∨ ψ ⊢DP χ. Hence,

φ ∨ ψ ⊢DP χ.

Now we are ready to present a standard proof of the following result of completeness.

Theorem 2.4. The logics SDP and S∧,∨ coincide. That is, for all Γ ∪ {φ} ⊆ Fm,

Γ ⊢DP φ ⇐⇒ Γ ⊨2 φ.

Proof. The implication from left to right (soundness), is a routine proof. Now we prove the

other implication. First, without loss of generality we can assume that Γ is a theory of the

logic SDP. Suppose that Γ ⊬DP φ. Then, there exists a theory ∆ of SDP such that Γ ⊆ ∆,

φ /∈ ∆, and ∆ is maximal among all the theories of SDP not containing φ (see for instance

[3, Lemma 1.43]). Now we define the map h : Fm → 2 as follows: for every α ∈ Fm,

h(α) = 1 ⇐⇒ α ∈ ∆. We need to show that h is a homomorphism. Let α, β ∈ Fm. Since

∆ is a theory, it follows by rules (R1) and (R3) that α ∧ β ∈ ∆ ⇐⇒ α, β ∈ ∆. Hence,

h(α ∧ β) = h(α) ∧ h(β). Now, by rules (R4) and (R5), we have that if α ∈ ∆ or β ∈ ∆,

then α ∨ β ∈ ∆. Then, h(α) = 1 or h(β) = 1 implies h(α ∨ β) = 1. Now assume that

h(α ∨ β) = 1. That is, α ∨ β ∈ ∆. Suppose that h(α) ̸= 1 and h(β) ̸= 1. Thus α, β /∈ ∆.

Let ∆α and ∆β be the theories of SDP generated by ∆∪ {α} and ∆∪ {β}, respectively. By
the maximality of ∆, we obtain that φ ∈ ∆α and φ ∈ ∆β. Thus we have that ∆, α ⊢DP φ

and ∆, β ⊢DP φ. Then, by Proposition 2.3, it follows that ∆, α∨ β ⊢DP φ. Since α∨ β ∈ ∆,

it follows that ∆ ⊢DP φ, a contradiction. Hence, we prove that h(α ∨ β) = 1 implies that

h(α) = 1 or h(β) = 1. Thus, we obtain that h(α ∨ β) = 1 ⇐⇒ h(α) = 1 or h(β) = 1.

Then h(α ∨ β) = h(α) ∨ h(β). We have proved that h : Fm → 2 is a homomorphism such

h(Γ) ⊆ {1} and h(φ) ̸= 1. Hence Γ ⊭2 φ.

Another standard alternative proof of the completeness between the {∧,∨}-fragment of

classical logic and the Hilbert-style axiomatization given in [2], following also usual argu-

ments, is possible. This proof makes explicit the role of the Lindenbaum-Tarski algebra. We
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sketch the proof and left the details to the reader. Suppose that Γ ⊬DP φ, and assume that

Γ is a theory. Then:

1. We consider the binary relation Λ(Γ) on Fm defined as follows:

(α, β) ∈ Λ(Γ) ⇐⇒ Γ, α ⊢DP β and Γ, β ⊢DP α.

2. Λ(Γ) is a congruence on Fm. Apply the Proof by Cases Principle.

3. The quotient algebra Fm/Λ(Γ) is a distributive lattice. It is also necessary to apply

the Proof by Cases Principle.

4. [α] ∈ Γ/Λ(Γ) if and only if α ∈ Γ.

5. Γ/Λ(Γ) = ∅ or Γ/Λ(Γ) is a proper filter of Fm/Λ(Γ).

6. There exists a prime filter F of Fm/Λ(Γ) such that Γ/Λ(Γ) ⊆ F and [φ] /∈ F .

7. The map f : Fm/Λ(Γ) → 2 defined by f([α]) = 1 ⇐⇒ [α] ∈ F is a homomorphism.

8. Let v : Fm → 2 be the homomorphism given by v(α) = f([α]). Hence v(Γ) ⊆ {1} and

v(φ) = 0. Therefore, Γ ⊭2 φ.

The relation Λ(Γ) is known as the Frege relation of Γ relative to SDP and the quotient algebra

Fm/Λ(Γ) is named the Lindenbaum-Tarski algebra, see for instance [6, 5].
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