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A completion for distributive nearlattices

Luciano J. González and Ismael Calomino

Abstract. The aim of this article is to propose an adequate completion for
distributive nearlattices. We give a proof of the existence of such a com-
pletion through a representation theorem, which allows us to prove that
this completion is a completely distributive algebraic lattice. We show
several properties about this completion, and we present a connection
with the free distributive lattice extension of a distributive nearlattice.
Finally, we consider how can be extended n-ary operations on distributive
nearlattices, and we study the basic properties of these extensions.
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1. Introduction

In the literature there exist different completions for several ordered algebraic
structures. For instance, we can mention the completion for Boolean algebras
with operators given by Jónsson and Tarski in [22] and [21], which was called
canonical extension. This completion was extended and generalized to bounded
distributive lattices with operators by Gehrke and Jónsson in [15,16] and [17],
and they proved that the canonical extension for bounded distributive lattices
has as nice properties as the canonical extension for Boolean algebras with
operators. Moreover, the concept of a canonical extension was generalized to
bounded lattices not necessarily distributive in [13], and to partially ordered
sets in [12]. The theory of completions for ordered algebraic structures have
different proposes, for instance, the canonical extension for posets introduced
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This research was supported by the CONICET under Grant PIP 112-201501-00412. Luciano
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by Dunn et al. in [12] was proved to be important to obtain a complete rela-
tional semantic for implication and fusion fragments of several substructural
logics.

Gehrke et al. [14] studied in a general and uniform way the completions
for posets for which each element of the completion is reachable by joins of
meets and by meets of joins from the original poset. This kind of completions
are called Δ1-completions. The canonical extension for posets given in [12] is
a particular case of Δ1-completion.

Nearlattices are join-semilattices with the greatest element in which every
principal filter is a bounded lattice. They are a natural generalization of im-
plication algebras, in the sense of [1], and also of bounded distributive lat-
tices. Nearlattices were studied mainly by Cornish and Hickman in [10,20],
and by Chajda, Halaš, Kühr and Kolař́ık in [19,7,6,8,5,9]. Nearlattices can
be regarded as total algebras via an everywhere defined ternary operation
satisfying some identities. An important class of nearlattices is the class of
distributive nearlattices. In [3] and [4], a full duality is developed for distribu-
tive nearlattices, and some applications are shown. Recently, in [18] the first
author proposes a sentential logic associated with the variety of distributive
nearlattices.

Since a distributive nearlattice has a natural order relation associated,
we can apply the theory of Δ1-completions given in [14] to obtain different
completions. But some of these completions may not be fully adequate. For
instance, we can consider the canonical extension of a nearlattice, as a poset,
and extend the ternary operation as in [12]. If the nearlattice is distributive, its
canonical extension need not be a distributive lattice, and so we think that the
canonical extension is not an adequate completion for nearlattices. In Figure
1, we show a distributive nearlattice A and its canonical extension, which is a
non-distributive lattice.

The purpose of this paper is to introduce an adequate notion of comple-
tion for distributive nearlattices and to study the extensions of n-ary opera-
tions defined on distributive nearlattices. The paper is organized as follows.
In Section 2, we recall the necessary concepts and results on Δ1-completions
and distributive nearlattices. In Section 3, we provide an alternative proof of
the existence of certain Δ1-completions [14] for distributive nearlattices; we
call these Δ1-completions as DN -completions. Section 4 is devoted to study
the connection between the free distributive lattice extension [10,4] and the
DN-completion of a distributive nearlattice. In Section 5, we study how to
extend the operations between distributive nearlattices to operations between
their DN-completions. We show that the extensions of the join and the ternary
operation of a distributive nearlattice correspond respectively to the join and
the natural ternary operation on its DN-completion.
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Figure 1. An example of a distributive nearlattice A and its
canonical extension, as a poset

2. Preliminaries

In this section, we present the main notions and results about the theories of
Δ1-completions and distributive nearlattices that we shall need for our pur-
poses in this paper. For more details about Δ1-completions for posets see [14].
Our main references for the theory of distributive nearlattices are [10,20,5].
Moreover, our reference on order theoretical notions is [11].

2.1. Δ1-completions

Definition 2.1. A polarity is a triple 〈X,Y,R〉 where X and Y are nonempty
sets and R ⊆ X × Y is a binary relation.

Every polarity 〈X,Y,R〉 gives rise to the following Galois connection
(ΦR,ΨR):

ΦR : P(X) → P(Y )
A �→ ΦR(A) = {y ∈ Y : (∀x ∈ X)(x ∈ A =⇒ xRy)}

ΨR : P(Y ) → P(X)
B �→ ΨR(B) = {x ∈ X : (∀y ∈ Y )(y ∈ B =⇒ xRy)}

We thus have the lattice of Galois closed subsets of X

G(X) = {A ∈ P(X) : (ΨR ◦ ΦR)(A) = A}.

For further details and background on polarities see [11,14].
Let P be a poset. A completion of P is a pair 〈L, e〉 where L is a complete

lattice and e : P → L is an order embedding. For each u ∈ L, we consider the
following sets:

[u)P = {a ∈ P : u ≤ e(a)} and (u]P = {a ∈ P : e(a) ≤ u}.

A collection F of upsets of P is called standard provided that {[a) : a ∈ P} ⊆
F , where [a) = {b ∈ P : a ≤ b} (dually (a]). Dually, a collection I of downsets
of P is called standard if {(a] : a ∈ P} ⊆ I. For each standard collection of
upsets F and each standard collection of downsets I, we consider the polarity
〈F , I, R〉 where R ⊆ F × I is defined as follows:

FRI ⇐⇒ F ∩ I �= ∅,

for every F ∈ F and I ∈ I. We will say that a pair 〈F , I〉 is a standard Δ1-
polarity of P if F is a standard collection of upsets of P and I is a standard
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collection of downsets of P , and we consider the binary relation R ⊆ F × I as
just defined.

Let P be a poset and let 〈F , I〉 be a standard Δ1-polarity of P . We know
that the polarity 〈F , I, R〉 gives rise to the Galois connection (ΦR,ΨR) and to
the lattice of Galois closed subsets G(F) = {X ∈ P(F) : (ΨR ◦ ΦR)(X) = X}
of F . Then, the map α : P → G(F) defined by α(a) = {F ∈ F : a ∈ F} is an
order embedding, and thus the pair 〈G(F), α〉 is a completion of P . If 〈L, e〉
is an arbitrary completion of P , then an element x ∈ L is called F-closed if
there is F ∈ F such that x =

∧
e[F ], and an element y ∈ L is called I-open

if there is I ∈ I such that y =
∨

e[I]. Let us denote the collection of all F-
closed elements of L by KF (L) and the collection of all I-open elements of L
by OI(L). We will drop the subscript when confusion is unlikely.

Definition 2.2. Let P be a poset and let 〈F , I〉 be a standard Δ1-polarity of
P . We will say that a completion 〈L, e〉 of P is:
(C) 〈F , I〉-compact when for each F ∈ F and each I ∈ I, if

∧
e[F ] ≤

∨
e[I],

then F ∩ I �= ∅,
(D) 〈F , I〉-dense if u =

∧
{y ∈ O(L) : u ≤ y} and u =

∨
{x ∈ K(L) : x ≤ u},

for every u ∈ L.

Definition 2.3 [14]. Let P be a poset and let 〈F , I〉 be a standard Δ1-polarity
of P . We say that a completion 〈L, e〉 of P is an 〈F , I〉-completion if it is
〈F , I〉-compact and 〈F , I〉-dense.

Theorem 2.4 [14]. Let P be a poset and let 〈F , I〉 be a standard Δ1-polarity of
P . Then the completion 〈G(F), α〉 is, up to isomorphism, the unique 〈F , I〉-
completion of P .

2.2. Nearlattices

Let 〈A,∨, 1〉 be a join-semilattice with a greatest element. We use “semilattice”
as an abbreviation of “join-semilattice with a greatest element”. A filter is a
nonempty subset F of A such that (1) if x ∈ F and x ≤ y, then y ∈ F and
(2) if x, y ∈ F then x ∧ y ∈ F , whenever x ∧ y exists. A proper filter F of
A is called prime if for all x, y ∈ A, if x ∨ y ∈ F , then x ∈ F or y ∈ F . We
denote by Fi(A) and Fipr(A) the collections of all filters and all prime filters
of A, respectively. Notice that the collection Fi(A) is a closure system on A,
and thus 〈Fi(A),⊆〉 is a complete lattice. We denote by FigA(.) the closure
operator associated with Fi(A).

A nonempty subset I of A is called an ideal when (1) if y ∈ I and x ≤ y,
then x ∈ I and (2) if x, y ∈ I, then x ∨ y ∈ I. A proper ideal I of A is called
prime if for all x, y ∈ A, x∧y ∈ I implies x ∈ I and y ∈ I, whenever x∧y exists.
We denote by Id(A) and Idpr(A) the collections of all ideals and all prime ideals
of A, respectively. It is easy to check that the intersection of any collection of
ideals is either an ideal or an empty set. Then, for every nonempty set X of
A, there exists the least ideal containing X and it is denoted by IdgA(X).

Definition 2.5. A nearlattice is a semilattice 〈A,∨, 1〉 such that for each a ∈ A,
the principal filter [a) = {x ∈ A : a ≤ x} is a bounded lattice with respect to
the induced order.
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Let A be a nearlattice. For every element a ∈ A, we denote the meet in
[a) by ∧a. It should be noted that for all x, y ∈ A, the meet x ∧ y exists in A
if and only if x, y have a common lower bound in A. Thus, for all x, y ∈ [a),
the meet of x and y in [a) coincides with their meet in A, i.e., x ∧a y = x ∧ y.
This should be kept in mind since we will use it without mention.

As we mentioned before, nearlattices can be considered as algebras with
one ternary operation satisfying some identities, and therefore they form a
variety. This fact was proved by Hickman in [20] and by Chajda and Kolař́ık
in [9]. Later, in [2] Araújo and Kinyon found a smaller equational base.

Theorem 2.6 [2]. Let A be a nearlattice. Let m : A3 → A be a ternary operation
given by m(x, y, z) := (x ∨ z) ∧z (y ∨ z). Then the following identities are
satisfied:
(1) m(x, y, x) = x,
(2) m(m(x, y, z),m(y,m(u, x, z), z), w) = m(w,w,m(y,m(x, u, z), z)),
(3) m(x, x, 1) = 1.

Conversely, let 〈A,m, 1〉 be an algebra of type (3,0) satisfying the identities
(1)–(3). If we define x ∨ y := m(x, x, y), then 〈A,∨, 1〉 is a nearlattice. More-
over, for each a ∈ A and for all x, y ∈ [a), we have x ∧a y = m(x, y, a).

Definition 2.7. A nearlattice A is said to be distributive if each principal filter
is a bounded distributive lattice.

Theorem 2.8 [9]. Let A be a nearlattice. Then, A is distributive if and only if
satisfies either of the following equivalent identities:
(1) m(x,m(y, y, z), w) = m(m(x, y, w),m(x, y, w),m(x, z, w)),
(2) m(x, x,m(y, z, w)) = m(m(x, x, y),m(x, x, z), w).

Let A be a distributive nearlattice and let X be a nonempty subset of A.
Then, there is a nice characterization of the generated filter FigA(X):

FigA(X) = {a ∈ A : ∃a1, . . . , an ∈ [X)(a = a1 ∧ · · · ∧ an)}, (2.1)

where [X) = {b ∈ A : x ≤ b for some x ∈ X}.

Theorem 2.9 [10]. Let A be a nearlattice. Then, A is distributive if and only
if the lattice 〈Fi(A),⊆〉 is distributive.

Theorem 2.10 [19]. Let A be a distributive nearlattice. Let I ∈ Id(A) and F ∈
Fi(A) such that I ∩ F = ∅. Then there exists P ∈ Idpr(A) such that I ⊆ P and
P ∩ F = ∅.

Let us consider the poset 〈Idpr(A),⊆〉, and we denote by Pd(Idpr(A)) the
collection of all downsets of 〈Idpr(A),⊆〉. Then 〈Pd(Idpr(A)),∪,∩, Idpr(A), ∅〉
is a completely distributive algebraic lattice and 〈Pd(Idpr(A)),m, Idpr(A)〉 is
a distributive nearlattice where m(U, V,W ) = (U ∪ W ) ∩ (V ∪ W ), for every
U, V,W ∈ Pd(Idpr(A)). Recall that if A and B are two distributive nearlattices,
a map f : A → B is a homomorphism if f(1) = 1, f(a ∨ b) = f(a) ∨ f(b), for
every a, b ∈ A, and f(a ∧ b) = f(a) ∧ f(b) whenever a ∧ b exists. We have the
following representation theorem given by Halaš in [19].
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Theorem 2.11 [19]. Let A be a distributive nearlattice. The map ϕA : A →
Pd(Idpr(A)) defined by

ϕA(a) = {P ∈ Idpr(A) : a /∈ P}
is an injective homomorphism.

As we mentioned in the Introduction, distributive lattices and implication
algebras [1] are distributive nearlattices. Moreover, it is easy to construct finite
distributive nearlattices. Next, we present an infinity distributive nearlattice,
which shall be used throughout the article.

Example 2.12. Consider the set A = Pℵ0(N) = {X ⊆ N : |X| = ℵ0}. Then, it
is easy to check that 〈A,∪, N〉 is a distributive nearlattice. For what follows
(Examples 3.12 and 4.5), we need to characterize the prime ideals of A:

• The only prime principal ideals of A are (Xn], where Xn = N − {n} and
n ∈ N.

• A non-principal ideal I is prime if and only if the following conditions
are satisfied:
(1)

⋃
I = N,

(2) for all Y ⊆ N such that |Y | = |Y c| = ℵ0, Y ∈ I or Y c ∈ I, and
(3) if Y ∈ I, then |Y c| = ℵ0.

3. DN-completion

If A is a distributive nearlattice, then 〈Fi(A), Id(A)〉 is a standard Δ1-polarity
of A, as a poset, and by Theorem 2.4 we have the 〈Fi(A), Id(A)〉-completion of
A.

Definition 3.1. Let A be a distributive nearlattice. The DN-completion of A
is the 〈Fi(A), Id(A)〉-completion of A. We denote the DN-completion of A by
〈A∗, α〉.

Without loss of generality we can consider that A is a sub-poset of A∗

and the order embedding α is the identity map. So, if 〈A∗,∨∗,∧∗, 1∗, 0∗〉 is the
DN-completion of A, then A ⊆ A∗, 1∗ = 1 and a ≤A b if and only if a ≤A∗ b,
for every a, b ∈ A. Moreover, the collections of closed and open elements of A∗

are given by
• K(A∗) = {x ∈ A∗ : x =

∧
F for some F ∈ Fi(A)},

• O(A∗) = {y ∈ A∗ : y =
∨

I for some I ∈ Id(A)},
and conditions (C) and (D) of Definition 2.2 are
(C) for each F ∈ Fi(A) and each I ∈ Id(A), if

∧
F ≤

∨
I, then F ∩ I �= ∅,

(D) u =
∧

{y ∈ O(A∗) : u ≤ y} and u =
∨

{x ∈ K(A∗) : x ≤ u}, for every
u ∈ A∗.

Remark 3.2. By property (C), notice that A = K(A∗) ∩ O(A∗). Moreover,
0∗ ∈ K(A∗) and not necessarily 0∗ ∈ O(A∗), since this should imply that A
has a least element, which is not necessarily the case. We show that 0∗ ∈ K(A∗).
Let y ∈ O(A∗). So, there is I ∈ Id(A) such that y =

∨
I. As I is nonempty,
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there is a ∈ I. Then
∧

A ≤ a ≤ y, i.e.,
∧

A ≤ y, for every y ∈ O(A∗). Thus,
by property (D), we have that

∧
A = 0∗ and since A ∈ Fi(A), it follows that

0∗ ∈ K(A∗).

Now we give some basic results about the DN-completion of a distributive
nearlattice, which will be useful for what follows.

Lemma 3.3. Let A be a distributive nearlattice and let A∗ be the DN-complet-
ion of A. Let F ∈ Fi(A) and I ∈ Id(A). Then the following properties are
satisfied:
(1)

∧
F ≤ a iff a ∈ F , for every a ∈ A,

(2) a ≤
∨

I iff a ∈ I, for every a ∈ A.

Lemma 3.4 [14]. Let A be a distributive nearlattice and let A∗ be the DN-
completion of A. Then a ∨∗ b = a ∨ b and a ∧∗ b = a ∧ b, whenever a ∧ b exists,
for every a, b ∈ A.

Since A∗ is a distributive lattice, it follows that the structure 〈A∗,m∗, 1∗〉
is a distributive nearlattice, where the ternary operation m∗ is naturally de-
fined by m∗(u, v, w) := (u ∨∗ w) ∧∗ (v ∨∗ w).

Proposition 3.5. Let A be a distributive nearlattice and A∗ its DN-completion.
Then 〈A,m, 1〉 is a subalgebra of 〈A∗,m∗, 1∗〉.

Let a, b, c ∈ A. Then, by Lemma 3.4, we have

m(a, b, c) = (a ∨ c) ∧c (b ∨ c) = (a ∨∗ c) ∧∗ (b ∨∗ c) = m∗(a, b, c). �
Lemma 3.6. Let A be a distributive nearlattice and let A∗ be its DN-complet-
ion. Let B be a nonempty subset of A. Then

∧
B =

∧
FigA(B) and

∨
B =∨

IdgA(B).

Proof. Using the characterization of generated filter (2.1), it can be proved
that

∧
B is the greatest lower bound of the set FigA(B). By a similar argu-

mentation, it can be proved that
∨

B =
∨

IdgA(B). �
Lemma 3.7. Let A be a distributive nearlattice and A∗ its DN-completion. Let
D and E be nonempty subsets of A. If

∧
D ≤

∨
E, then there exist nonempty

finite subsets D0 ⊆ [D) and E0 ⊆ E such that
∧

D0 ≤
∨

E0 in A.

Proof. It follows by property (C) and from the characterization of generated
filter (2.1). �
Lemma 3.8. Let A be a distributive nearlattice and A∗ its DN-completion. Let
X and Y be nonempty subsets of K(A∗) and O(A∗), respectively. Then

∧
X ∈

K(A∗) and
∨

Y ∈ O(A∗).

Proof. For each x ∈ X, there is Fx ∈ Fi(A) such that x =
∧

Fx. Then, by
Lemma 3.6, we have

∧
X =

∧

x∈X

(∧
Fx

)
=

∧
(

⋃

x∈X

Fx

)

=
∧

FigA

(
⋃

x∈X

Fx

)

∈ K(A∗).

An analogous argument shows that
∨

Y ∈ O(A∗). �
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Now we focus on the DN-completion of the direct product of distributive
nearlattices. Let A and B be distributive nearlattices and let A∗ and B∗ be
the DN-completions of A and B, respectively. It is clear that A∗ × B∗ is
a completion of the distributive nearlattice A × B. The following result is
straightforward, and we thus leave the details to the reader.

Lemma 3.9. Let A and B be distributive nearlattices. Then:

(1) Fi(A × B) = {F1 × F2 : F1 ∈ Fi(A) and F2 ∈ Fi(B)}.
(2) Id(A × B) = {I1 × I2 : I1 ∈ Id(A) and I1 ∈ Id(B)}.

Proposition 3.10. Let A and B be distributive nearlattices and let A∗ and B∗

be the DN-completions of A and B, respectively. Then:

(1) K(A∗ × B∗) = K(A∗) × K(B∗),
(2) O(A∗ × B∗) = O(A∗) × O(B∗),
(3) (A × B)∗ ∼= A∗ × B∗.

Proof. (1) By Lemma 3.9, we have

K(A∗ × B∗) =
{∧

F : F ∈ Fi(A × B)
}

=
{∧

(F1 × F2) : F1 ∈ Fi(A), F2 ∈ Fi(B)
}

=
{(∧

F1,
∧

F2

)
: F1 ∈ Fi(A), F2 ∈ Fi(B)

}

= K(A∗) × K(B∗).

(2) It follows similarly to (1).
(3) By Theorem 2.4, it is enough to show that the completion A∗ × B∗

satisfies the properties (C) and (D). Let F ∈ Fi(A × B) and I ∈ Id(A × B)
be such that

∧
F ≤

∨
I. Thus, there are F1 ∈ Fi(A), F2 ∈ Fi(B), I1 ∈ Id(A)

and I2 ∈ Id(B) such that F = F1 × F2 and I = I1 × I2. It follows that∧
F =

∧
(F1 × F2) = (

∧
F1,

∧
F2) and

∨
I =

∨
(I1 × I2) = (

∨
I1,

∨
I2). Since∧

F ≤
∨

I, we have
∧

F1 ≤
∨

I1 and
∧

F2 ≤
∨

I2. Then, by property (C) for
A∗ and B∗, F1 ∩ I1 �= ∅ and F2 ∩ I2 �= ∅. This implies that F ∩ I �= ∅. Now,
we prove property (D). Let (u, v) ∈ A∗ × B∗. Using property (D) for A∗ and
B∗ and from (1), we obtain that

(u, v) =
(∨

{x1 ∈ K(A∗) : x1 ≤ u},
∨

{x2 ∈ K(B∗) : x2 ≤ v}
)

=
∨

({x1 ∈ K(A∗) : x1 ≤ u} × {x2 ∈ K(B∗) : x2 ≤ v})

=
∨

{(x1, x2) ∈ K(A∗) × K(B∗) : (x1, x2) ≤ (u, v)}

=
∨

{(x1, x2) ∈ K(A∗ × B∗) : (x1, x2) ≤ (u, v)}.

Similarly, we can prove that

(u, v) =
∧

{(y1, y2) ∈ O(A∗ × B∗) : (u, v) ≤ (y1, y2)}.

Then A∗ × B∗ is the DN-completion of A × B, i.e., (A × B)∗ ∼= A∗ × B∗. �
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Next, we provide an alternative proof of the existence of the DN-comp-
letion of a distributive nearlattice A to that given in [14]. We show that in fact
Pd(Idpr(A)) is, up to isomorphism, the DN-completion of A.

Theorem 3.11. Let A be a distributive nearlattice. Then 〈Pd(Idpr(A)), ϕA〉 is
the DN-completion of A.

Proof. By Definition 2.3 and Theorem 2.4, we need to prove that the comple-
tion 〈Pd(Idpr(A)), ϕA〉 satisfies conditions (C) and (D).

Let F ∈ Fi(A) and I ∈ Id(A). Suppose that
⋂

ϕA[F ] ⊆
⋃

ϕA[I]. If
F ∩ I = ∅, by Theorem 2.10, there is P ∈ Idpr(A) such that F ∩ P = ∅ and
I ⊆ P . Thus, P ∈

⋂
ϕA[F ] and P /∈

⋃
ϕA[I], which is a contradiction. So

F ∩ I �= ∅, and the completion 〈Pd(Idpr(A)), ϕA〉 satisfies condition (C).
We show condition (D). Let u ∈ Pd(Idpr(A)). We need to prove that

(1) u =
⋃

{
⋂

ϕA[F ] : F ∈ Fi(A),
⋂

ϕA[F ] ⊆ u},
(2) u =

⋂
{
⋃

ϕA[I] : I ∈ Id(A), u ⊆
⋃

ϕA[I]}.
Let P ∈ u. Then P ∈ Idpr(A) and thus P c ∈ Fi(A). Since P ∈ u and u
is a downset of Idpr(A), we have

⋂
ϕA[P c] ⊆ u. Given that P ∩ P c = ∅,

P ∈
⋂

ϕA[P c]. Then P ∈
⋃

{
⋂

ϕA[F ] : F ∈ Fi(A),
⋂

ϕA[F ] ⊆ u}, and
hence u ⊆

⋃
{
⋂

ϕA[F ] : F ∈ Fi(A),
⋂

ϕA[F ] ⊆ u}. The inverse inclusion is
straightforward and therefore (1) holds.

To prove (2), we note first that if u = ∅, then
⋂

{
⋃

ϕA[I] : I ∈ Id(A), u ⊆⋃
ϕA[I]} = ∅. Otherwise, there is P ∈

⋂
{
⋃

ϕA[I] : I ∈ Id(A), u ⊆
⋃

ϕA[I]}.
So, in particular, P ∈

⋃
ϕA[P ]. Then there is a ∈ P such that P ∈ ϕA(a),

i.e., a ∈ P and a /∈ P , which is a contradiction. Now, we assume that u �= ∅.
Let P ∈

⋂
{
⋃

ϕA[I] : I ∈ Id(A), u ⊆
⋃

ϕA[I]}. Suppose that P /∈ u. Since u
is a downset of Idpr(A), it follows that for each Q ∈ u, P � Q. So, there is
aQ ∈ P \ Q. Let B = {aQ : Q ∈ u} and we consider the ideal I = IdgA(B). It
is easy to check that u ⊆

⋃
ϕA[I]. As B ⊆ P , we have I ⊆ P and P /∈

⋃
ϕA[I],

which is a contradiction. Thus,
⋂

{
⋃

ϕA[I] : I ∈ Id(A), u ⊆
⋃

ϕA[I]} ⊆ u. The
other inclusion is trivial, and thus (2) holds. Therefore, by Theorem 2.4, the
pair 〈Pd(Idpr(A)), ϕA〉 is, up to isomorphism, the DN-completion of A. �

Example 3.12. Consider the distributive nearlattice A = Pℵ0(N) of Example
2.12. From Theorem 3.11, we have that the DN-completion of A is A∗ =
Pd(Idpr(A)). Let us prove that the prime ideals of A are incomparable. Let
I1, I2 ∈ Idpr(A) be such that I1 �= I2. We analysis the following cases:

• If I1 and I2 are principal, then there exist n,m ∈ N such that I1 = (Xn]
and I2 = (Xm], where Xn = N − {n} and Xm = N − {m}. Thus, it is
clear that I1 � I2 and I2 � I1.

• If I1 is principal and I2 is non-principal, then there is n ∈ N such that
I1 = (Xn], where Xn = N − {n}. So, by (3) of Example 2.12, Xn /∈ I2.
Then, (Xn] � I2. Now suppose that I2 ⊂ (Xn]. Then n /∈ Y , for all
Y ∈ I2, i.e., n /∈

⋃
I2 = N, which is a contradiction. Thus, I1 � I2 and

I2 � I1.
• Finally, suppose that I1 and I2 are non-principal. If I1 ⊂ I2, then there is

Y ∈ I2 such Y /∈ I1. It follows that |Y c| = ℵ0, and since Y /∈ I1, we have
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Figure 2. A distributive nearlattice and its DN-completion

Y c ∈ I1. So, Y c ∈ I2. Then N = Y ∪ Y c ∈ I2, which is a contradiction.
Thus, I1 � I2 and I2 � I1.
Hence, we have proved that 〈Idpr(A),⊆〉 is an anti-chain. Therefore, A∗ =

Pd(Idpr(A)) = P(Idpr(A)).

In Lemma 3.8 we have proved that the set of closed elements K(A∗) of
the DN-completion A∗ of a distributive nearlattice A is closed under arbitrary
meets. Now, we can prove that K(A∗) is, in fact, a sublattice of A∗. A different
situation happens with the open elements. We saw that O(A∗) is closed under
arbitrary joins, but O(A∗) need not be closed under meets. Consider the dis-
tributive nearlattice A and its DN-completion A∗ in Figure 2. Then we have
O(A∗) = {a, b, c, 1} and b ∧∗ c = u /∈ O(A∗).

Proposition 3.13. Let A be a distributive nearlattice and A∗ its DN-complet-
ion. Then K(A∗) is a sublattice of A∗.

Proof. By Lemma 3.8 and Remark 3.2, we only need to show that K(A∗) is
closed under finite joins. Let x1, x2 ∈ K(A∗) and let F1, F2 ∈ Fi(A) be such
that x1 =

∧
F1 and x2 =

∧
F2. By Theorem 3.11, A∗ is completely distributive

and we thus have

x1 ∨ x2 =
∧

F1 ∨
∧

F2 =
∧

{a ∨ b : a ∈ F1, b ∈ F2} =
∧

(F1 ∩ F2).

Since F1 ∩ F2 ∈ Fi(A), it follows that x1 ∨ x2 ∈ K(A∗). �
Let A be a distributive nearlattice and let A∗ be the DN-completion of A.

Let X be a nonempty subset of A∗. An element j ∈ A∗ is called completely join
irreducible when j =

∨
X implies j ∈ X. Dually, an element m ∈ A∗ is called

completely meet irreducible when m =
∧

X implies m ∈ X. Let us denote by
J∞(A∗) and M∞(A∗) the collections of all completely join irreducible elements
and all completely meet irreducible elements, respectively. By [14], we know
that K(A∗) is dually isomorphic to Fi(A) and O(A∗) is isomorphic to Id(A) by
the following maps:
∧

: Fi(A) � K(A∗) : [.)A

F �→
∧

F
[x)A ←� x

∨
: Id(A) � O(A∗) : (.]A

I �→
∨

I
(y]A ← � y
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Then, by [14], J∞(A∗) ⊆ K(A∗) and M∞(A∗) ⊆ O(A∗). In the following
proposition we establish the correspondences between J∞(A∗) and some class
of filters and between M∞(A∗) and some ideals.

Proposition 3.14. Let A be a distributive nearlattice and A∗ its DN-complet-
ion. Then:
(1) F ∈ Fipr(A) iff

∧
F ∈ J∞(A∗), for every F ∈ Fi(A),

(2) I ∈ Idpr(A) iff
∨

I ∈ M∞(A∗), for every I ∈ Id(A).

Proof. (1) Let F ∈ Fi(A). Suppose that F ∈ Fipr(A) and let x0 =
∧

F . Let X
be a nonempty subset of A∗ such that x0 =

∨
X. Since K(A∗) is join-dense

in A∗, we can assume without loss of generality that X ⊆ K(A∗). Suppose
that x0 /∈ X. Thus x < x0, i.e., x <

∧
F for every x ∈ X. This implies that

F c ∩ [x)A �= ∅ for every x ∈ X. Then, for each x ∈ X, there is ax ∈ F c ∩ [x)A.
We obtain that

∧
F = x0 =

∨
X ≤

∨

x∈X

ax ≤
∨

F c.

As F ∈ Fipr(A), we have F c ∈ Id(A), and by condition (C) we obtain that
F ∩ F c �= ∅. This is a contradiction. Then

∧
F = x0 ∈ J∞(A∗).

Conversely, assume that x0 =
∧

F ∈ J∞(A∗). Let a, b ∈ A be such that
a ∨ b ∈ F . So, x0 ≤ a ∨ b, and then x0 = x0 ∧ (a ∨ b) = (x0 ∧ a) ∨ (x0 ∧ b).
Since x0 ∈ J∞(A∗), it follows that x0 ≤ a or x0 ≤ b. Thus a ∈ F or b ∈ F ,
and therefore F ∈ Fipr(A).

(2) It can be proved by a dual argumentation. �

4. Connection between the free distributive lattice extension
and the DN-completion

In this section, we are going to study the connection between the free distribu-
tive lattice extension and the DN-completion of a distributive nearlattice. In
[10], the authors show that the free distributive lattice extension of a distribu-
tive nearlattice A is the distributive lattice of all finitely generated filters of
A. Recently in [4], following the duality developed in [3], a new topological ap-
proach of the existence of the free distributive lattice extension of A is shown.

Definition 4.1. Let A be a distributive nearlattice. A pair 〈L(A), e〉, where
L(A) is a bounded distributive lattice and e : A → L(A) an embedding, is
said to be a free distributive lattice extension of A if e[A] is finitely meet-
dense in L(A) and the following universal property holds: for every bounded
distributive lattice M and every homomorphism h : A → M , there exists a
unique homomorphism ĥ : L(A) → M such that h = ĥ ◦ e.

Remark 4.2. The finitely meet-dense condition in Definition 4.1 implies that
the free distributive lattice extension is unique up to isomorphism.

Let A be a distributive nearlattice. Recall that in [3] the dual space
of A was defined as a topological space 〈X,K〉 where K is a base satisfying
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certain additional conditions. By Theorem 2.11, A is isomorphic to the sub-
algebra ϕA[A] = {ϕA(a) : a ∈ A} of Pd(Idpr(A)). By the results in [3], the
pair 〈Idpr(A),KA〉 is the dual space of A, where the topology TA is gener-
ated by taking as base the family KA = {ϕA(a)c : a ∈ A}. We will denote
by KO(Idpr(A)) the family of all open and compact subsets of 〈Idpr(A),KA〉,
and we consider the family DKO[Idpr(A)] = {U : U c ∈ KO(Idpr(A))}. If fol-
lows that U ∈ DKO[Idpr(A)] if and only if there exist a1, . . . , an ∈ A such
that U = ϕA(a1) ∩ · · · ∩ ϕA(an). Then, by the results presented in [4], we
have that 〈DKO[Idpr(A)], ϕA〉 is the free distributive lattice extension of A.
On the other hand, by Theorem 3.11, 〈Pd(Idpr(A)), ϕA〉 is the DN-completion
of A. We consider the lattice generated by ϕA[A] in Pd(Idpr(A)), denoted by
L(ϕA[A]). Since Pd(Idpr(A)) is distributive, L(ϕA[A]) can be constructed as
follows: at first, take the meets of all nonempty finite subsets of ϕA[A]. Then
L(ϕA[A]) is the set of joins of all nonempty finite subsets of these meets. It
follows that L(ϕA[A]) = DKO[Idpr(A)]. Indeed, if V ∈ L(ϕA[A]) then there
exist a1

1, . . . , a
1
n1

, . . . , ak
1 , . . . , a

k
nk

∈ A such that

V = [ϕA(a1
1) ∪ · · · ∪ ϕA(a1

n1
)] ∩ · · · ∩ [ϕA(ak

1) ∪ · · · ∪ ϕA(ak
nk

)]

= ϕA(ā1) ∩ · · · ∩ ϕA(āk),

where āi = ai
1 ∨ · · · ∨ ai

ni
∈ A, for every i ∈ {1, . . . , k}. So, V ∈ DKO[Idpr(A)].

The other inclusion is immediate. Then the bounded distributive lattice
L(ϕA[A]) embedded in the DN-completion Pd(Idpr(A)) is the free distributive
lattice extension of A. In summary, L(A) ∼= L(ϕA[A]) = DKO[Idpr(A)].

Proposition 4.3. Let A be a distributive nearlattice and let 〈L(A), e〉 be the free
distributive lattice extension of A. Then the map

β : Idpr(L(A)) → Idpr(A)

defined by β(P ) = {a ∈ A : e(a) ∈ P} is an order embedding.

Proof. Since e is a homomorphism, it is easy to show that β(P ) ∈ Idpr(A)
for every P ∈ Idpr(L(A)). Let P1, P2 ∈ Idpr(L(A)). It is straightforward that
P1 ⊆ P2 implies β(P1) ⊆ β(P2). Now, assume that β(P1) ⊆ β(P2). Suppose
that P1 � P2, i.e., there is x ∈ P1 such that x /∈ P2. Since e[A] is meet-dense in
L(A), there exist a1, . . . , an ∈ A such that x = e(a1)∧· · ·∧(an) ∈ P1 and as P1

is prime, there is i ∈ {1, . . . , n} such that e(ai) ∈ P1. Then ai ∈ β(P1) ⊆ β(P2)
and thus e(ai) ∈ P2. It follows that x ∈ P2, which is a contradiction. Hence
P1 ⊆ P2. This completes the proof. �

The notion of canonical extension of a distributive lattice was defined
in [15]. It is showed that the canonical extension of a distributive lattice L
is, up to isomorphism, 〈Pd(Idpr(L)), α〉 where α : L → Pd (Idpr(L)) is given by
α(x) = {Q ∈ Idpr(L) : x /∈ Q}. Let us denote by Lσ the canonical extension
of a distributive lattice L. Thus, we will consider Lσ = Pd (Idpr(L)). It is not
hard to show that the canonical extension of L is in fact the 〈Fi(L), Id(L)〉-
completion of L.

For a distributive nearlattice A, we show that the canonical extension
L(A)σ of L(A) is a homomorphic image of the DN-completion A∗.
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Figure 3. L(A)σ is a homomorphic image of A∗

Proposition 4.4. Let A be a distributive nearlattice and let 〈L(A), e〉 be the free
distributive lattice extension of A. Let 〈A∗, ϕA〉 be the DN-completion of A and
let 〈L(A)σ, α〉 be the canonical extension of L(A). Then there exist a lattice
embedding ϕ̂ : L(A) → A∗ and an onto lattice homomorphism Ψ: A∗ → L(A)σ

such that ϕA = ϕ̂ ◦ e and α = Ψ ◦ ϕ̂, see Figure 3.

Proof. We know that L(A)σ = Pd (Idpr(L(A)) and α : L(A) → L(A)σ is given
by α(x) = {Q ∈ Idpr(L(A)) : x /∈ Q}. Recall also that A∗ = Pd (Idpr(A)) and
ϕA : A → A∗ is defined by ϕA(a) = {P ∈ Idpr(A) : a /∈ P}.

The existence of the lattice embedding ϕ̂ : L(A) → A∗ such that ϕA =
ϕ̂ ◦ e is a direct consequence of Definition 4.1.

Now, since by Proposition 4.3 the map β : Idpr(L(A)) → Idpr(A) is an
order embedding, it follows that the map Ψ: A∗ → L(A)σ defined by

Ψ(u) = β−1[u] = {P ∈ Idpr(L(A)) : β(P ) ∈ u}
for every u ∈ A∗ = Pd (Idpr(A)) is an onto lattice homomorphism. In order to
show that Ψ ◦ ϕ̂ = α, let x ∈ L(A). By Definition 4.1, there are a1, . . . , an ∈ A
such that x = e(a1)∧· · ·∧e(an). Thus ϕ̂(x) = ϕA(a1)∩· · ·∩ϕA(an), and then
Ψ(ϕ̂(x)) = Ψ(ϕA(a1)) ∩ · · · ∩ Ψ(ϕA(an)). Hence, for P ∈ Idpr(L(A)), we have

P ∈ α(x) ⇐⇒ x /∈ P

⇐⇒ ∀i ∈ {1, . . . , n}(e(ai) /∈ P )

⇐⇒ ∀i ∈ {1, . . . , n}(ai /∈ β(P ))

⇐⇒ ∀i ∈ {1, . . . , n}(β(P ) ∈ ϕA(ai))

⇐⇒ ∀i ∈ {1, . . . , n}(P ∈ Ψ(ϕA(ai)))

⇐⇒ P ∈ Ψ(ϕA(a1)) ∩ · · · ∩ Ψ(ϕA(an)) = Ψ(ϕ̂(x)).

Hence α(x) = Ψ(ϕ̂(x)). This completes the proof. �

Example 4.5. Let us show that the free distributive lattice extension and the
DN-completion of a distributive nearlattice not necessarily coincide. Consider
again the distributive nearlattice A = Pℵ0(N) of Example 2.12. Thus, by Ex-
ample 3.12, we know that the DN-completion of A is A∗ = P(Idpr(A)). Now, we
shall see that the free distributive lattice extension L(ϕA[A]) of A is properly
contained in P(Idpr(A)). Recall that

L(ϕA[A]) = {ϕA(B1) ∩ · · · ∩ ϕA(Bn) : n ∈ N and B1, . . . , Bn ∈ A},
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where ϕA : A → P(Idpr(A)) defined by ϕA(B) = {I ∈ Idpr(A) : B /∈ I}. Recall
also that for every n ∈ N, Xn = N−{n}. Let Λ = {(Xn] : n ∈ N} ∈ P(Idpr(A)).
Suppose that there exists {B1, . . . , Bn} ⊆ A such that Λ = ϕA(B1) ∩ · · · ∩
ϕA(Bn). Since Λ �= Idpr(A), it follows that Bi �= N, for some i ∈ {1, . . . , n}.
Thus, there is m ∈ N such that m /∈ Bi. Then Bi ⊆ Xm, i.e., Bi ∈ (Xm]. Thus
(Xm] /∈ ϕA(Bi), which is a contradiction. Hence, Λ /∈ L(ϕA[A]).

5. Extensions of n-ary operations

In this section, we study two extensions of n-ary operations defined on dis-
tributive nearlattices. We shall describe how to extend the additional opera-
tions from a distributive nearlattice to its DN-completion. We focus on those
operations that are order preserving in each argument.

Moreover, in order to study the extensions of n-ary operations, it is
enough to consider just the extensions of unary operations, because DN-
completions of distributive nearlattices commute with direct products (Propo-
sition 3.10). That is, since (A∗)n ∼= (An)∗, it is equivalent to consider opera-
tions f : (A∗)n → B∗ and f : (An)∗ → B∗.

The following definition is similar to that given in [15] (see also [12]) in
the framework of canonical extension for distributive lattices.

Definition 5.1. Let A and B be distributive nearlattices and let A∗ and B∗

be the DN-completions of A and B, respectively. Let f : A → B be an order
preserving map. For each u ∈ A∗, we define fσ : A∗ → B∗ and fπ : A∗ → B∗

as follows:

fσ(u) =
∨{∧

{f(a) : x ≤ a ∈ A} : u ≥ x ∈ K(A∗)
}

, (5.1)

fπ(u) =
∧{∨

{f(a) : y ≥ a ∈ A} : u ≤ y ∈ O(A∗)
}

. (5.2)

In the following proposition, we show some basic but useful properties of
fσ and fπ. Its proof is straightforward, and thus we leave the details to the
reader.

Proposition 5.2. Let A and B be distributive nearlattices and let A∗ and B∗

be the DN-completions of A and B, respectively. Let f : A → B be an order
preserving map. Then:

(P1) for each x ∈ K(A∗) and each y ∈ O(A∗),
• fσ(x) =

∧
{f(a) : x ≤ a ∈ A},

• fσ(x) ∈ K(A∗),
• fπ(y) =

∨
{f(a) : y ≥ a ∈ A},

• fπ(y) ∈ O(A∗),
(P2) for each u ∈ A∗,

• fσ(u) =
∨

{fσ(x) : u ≥ x ∈ K(A∗)},
• fπ(u) =

∧
{fπ(y) : u ≤ y ∈ O(A∗)},

(P3) fσ and fπ are order preserving and extend f ,
(P4) fσ ≤ fπ and they coincide on K(A∗) ∪ O(A∗).
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By Theorem 3.11, the pair 〈Pd(Idpr(A)), ϕA〉 is the DN-completion of a
distributive nearlattice A. With this consideration, if f : A → B is an order
preserving map between distributive nearlattices, then we have from (4.1) and
(4.2) that for each u ∈ A∗ = Pd(Idpr(A)):

• fσ(u) =
⋃

{
⋂

{ϕB(f(a)) : x ⊆ ϕA(a), a ∈ A} : u ⊇ x ∈ K(A∗)},
• fπ(u) =

⋂
{
⋃

{ϕB(f(a)) : y ⊇ ϕA(a), a ∈ A} : u ⊆ y ∈ O(A∗)}.

Lemma 5.3. Let A and B be distributive nearlattices and let A∗ and B∗ be the
DN-completions of A and B, respectively. Let f : A → B be an order preserving
map such that f(1) = 1. Then:

(1) if f preserves finite joins, then fπ preserves arbitrary joins of open ele-
ments,

(2) if f preserves existing finite meets, then fσ preserves arbitrary meets of
closed elements.

Proof. (1) Let Y ⊆ O(A∗) and y0 =
⋃

Y . Since fπ is order preserving, it
follows that

⋃
y∈Y fπ(y) ⊆ fπ(y0). Let Q ∈ fπ(y0) =

⋃
{ϕB(f(a)) : a ∈

A,ϕA(a) ⊆ y0}. Thus, there is a0 ∈ A such that ϕA(a0) ⊆ y0 and Q ∈
ϕB(f(a0)). Then a0 /∈ f−1[Q]. If f−1[Q] = ∅, then a /∈ f−1[Q] and Q ∈
ϕB(f(a)) for every a ∈ A. Hence Q ∈

⋃
{ϕB(f(a)) : ϕA(a) ⊆ y} = fπ(y) for

every y ∈ Y and we thus obtain that Q ∈
⋃

y∈Y fπ(y). Assume that f−1[Q] �=
∅. Since f preserves finite joins, f−1[Q] is an ideal of A. As a0 /∈ f−1[Q], by
Theorem 2.10, there is P ∈ Idpr(A) such that a0 /∈ P and f−1[Q] ⊆ P . Then
P ∈ ϕA(a0) ⊆ y0 =

⋃
Y and so, there is y′ ∈ Y such that P ∈ y′ =

⋃
{ϕA(a) :

a ∈ A,ϕA(a) ⊆ y′}. Thus, there is a1 ∈ A such that ϕA(a1) ⊆ y′ and P ∈
ϕA(a1). Hence a1 /∈ P and this implies that a1 /∈ f−1[Q]. Then, Q ∈ ϕB(f(a1))
and ϕA(a1) ⊆ y′. It follows that Q ∈ fπ(y′) and Q ∈

⋃
y∈Y fπ(y). We have

proved that fπ(y0) ⊆
⋃

y∈Y fπ(y).
(2) Let X ⊆ K(A∗) and x0 =

⋂
X. Since fσ is order preserving, it

follows that fσ(x0) ⊆
⋂

x∈X fσ(x). By (P1), for each x ∈ K(A∗) we have
fσ(x) =

⋂
{ϕB(f(a)) : a ∈ A, x ⊆ ϕA(a)}. Let Q ∈

⋂
x∈X fσ(x). Then, for

each x ∈ X, Q ∈ ϕB(f(a)) for every a ∈ A such that x ⊆ ϕA(a). That is, for
each x ∈ X, a /∈ f−1[Q] for every a ∈ A such that x ⊆ ϕA(a). As Q is a prime
ideal of B, Qc is a filter. Since f preserves existing finite meets and f(1) = 1,
it follows that f−1[Qc] ∈ Fi(A). Suppose that Q /∈ fσ(x0) =

⋂
{ϕB(f(a)) :

a ∈ A, x0 ⊆ ϕA(a)}. Thus, there is a0 ∈ A such that x0 ⊆ ϕA(a0) and
Q /∈ ϕB(f(a0)). Then a0 /∈ f−1[Qc]. By Theorem 2.10, there is P ∈ Idpr(A)
such that a0 ∈ P and P ∩ f−1[Qc] = ∅. So, P ⊆ f−1[Q]. Then P /∈ ϕA(a0)
and P /∈ x0. This implies that there is x ∈ X such that P /∈ x. Since x is a
closed element of A∗, x =

⋂
{ϕA(a) : a ∈ A, x ⊆ ϕA(a)}. It follows that there

is a1 ∈ A such that x ⊆ ϕA(a1) and P /∈ ϕA(a1), i.e., a1 ∈ P . Hence, for the
closed element x ∈ X, a1 ∈ f−1[Q] and x ⊆ ϕA(a1), which is a contradiction.
Therefore, Q ∈ fσ(x0) and

⋂
x∈X fσ(x) ⊆ fσ(x0). �

Now, we can prove a stronger result that the previous one.
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Proposition 5.4. Let A and B be distributive nearlattices and let A∗ and B∗

be the DN-completions of A and B, respectively. Let f : A → B be an order
preserving map such that f(1) = 1. Then:
(1) if f preserves finite joins, then fπ preserves arbitrary joins,
(2) if f preserves existing finite meets, then fσ preserves arbitrary meets.

Proof. (1) Let U ⊆ A∗ and u0 =
∨

U . Since fπ is order preserving, it follows
that

∨
u∈U fπ(u) ≤ fπ(u0). Since B∗ is a completely distributive lattice, it

follows by Lemma 5.3 that
∨

u∈U

fπ(u) =
∨

u∈U

∧
{fπ(y) : u ≤ y ∈ O(A∗)}

=
∧

α : U→O(A∗)
u≤α(u)

∨

u∈U

fπ(α(u))

=
∧

α : U→O(A∗)
u≤α(u)

fπ

(
∨

u∈U

α(u)

)

.

As u0 =
∨

U ≤
∨

u∈U α(u) for every α : U → O(A∗) such that u ≤ α(u) and
since fπ is order preserving, it follows that fπ(u0) ≤ fπ

(∨
u∈U α(u)

)
for every

α. Then

fπ(u0) ≤
∧

α : U→O(A∗)
u≤α(u)

fπ

(
∨

u∈U

α(u)

)

=
∨

u∈U

fπ(u).

This completes the proof of (1).
(2) It follows by a dual argumentation. �

Let us see now that the extensions of the operations ∨ and m of a dis-
tributive nearlattice coincide respectively with the operations ∨∗ and m∗ (see
on page 7) of its DN-completion. First, we introduce the following definition
as a generalization of a definition given in [16].

Definition 5.5. Let A and B be distributive nearlattices and let f : A → B be
an order preserving map. We say that f is smooth if fσ = fπ.

The proof of the following result is similar to that given in [16].

Lemma 5.6. Let A and B be distributive nearlattices and let f : A → B be an
order preserving map. If fπ preserves joins of up-directed subsets, then f is
smooth.

Theorem 5.7. Let A be a distributive nearlattice and A∗ its DN-completion.
Then ∨σ = ∨∗ and ∨π = ∨∗. Hence, ∨ is smooth.

Proof. First, we prove that ∨π and ∨∗ coincide on the open elements of A∗.
Let y1, y2 ∈ O(A∗). By (P1), we have

y1 ∨π y2 =
∨

{a ∨∗ b : a ≤ y1, b ≤ y2, a, b ∈ A}.
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Since y1, y2 ∈ O(A∗), there are I1, I2 ∈ Id(A) such that y1 =
∨

I1 and y2 =∨
I2. Then, by Lemma 3.3, we have

y1 ∨π y2 =
∨

{a ∨∗ b : a ∈ I1, b ∈ I2}.

So, we obtain that y1 ∨π y2 =
∨

I1 ∨∗ ∨
I2 = y1 ∨∗ y2.

Let now u1, u2 ∈ A∗. By (P2) and Lemma 3.8, we have

u1 ∨π u2 =
∧

{y1 ∨π y2 : u1 ≤ y1, u2 ≤ y2, y1, y2 ∈ O(A∗)}

=
∧

{y1 ∨∗ y2 : u1 ≤ y1, u2 ≤ y2, y1, y2 ∈ O(A∗)}

=
∧

{y ∈ O(A∗) : u1 ∨∗ u2 ≤ y}
= u1 ∨∗ u2.

Now, since ∨ preserves joins, it follows by Proposition 5.4 that ∨π preserves
arbitrary joins and, in particular, ∨π preserves joins of up-directed subsets.
Therefore, by Lemma 5.6, ∨ is smooth and hence ∨σ = ∨π = ∨∗. �

Let A be a distributive nearlattice and A∗ its DN-completion. For a :=
(a1, a2, a3) ∈ A3, we write

ϕA(a) := (ϕA(a1), ϕA(a2), ϕA(a3)).

By Theorem 3.11, the pair 〈Pd(Idpr(A)), ϕA〉 is the DN-completion of A and
m∗(u1, u2, u3) = (u1 ∪ u3) ∩ (u2 ∪ u3) = (u1 ∩ u2) ∪ u3, for every u1, u2, u3 ∈
Pd(Idpr(A)). Moreover, since ϕA : A → Pd(Idpr(A)) is a homomorphism, we
have ϕA(m(a)) = m∗(ϕA(a)), for each a ∈ A3. As the operation m is or-
der preserving, by (4.1) and (4.2) we have that for each u = (u1, u2, u3) ∈
Pd(Idpr(A))3:

• mσ(u) =
⋃ {⋂

{m∗(ϕA(a)) : x ≤ ϕA(a), a ∈ A3} : u ≥ x ∈ K(A∗)3
}
,

• mπ(u) =
⋂ {⋃

{m∗(ϕA(a)) : ϕA(a) ≤ y, a ∈ A3} : u ≤ y ∈ O(A∗)3
}
.

Theorem 5.8. Let A be a distributive nearlattice and let A∗ be the DN-
completion of A. Then mσ = m∗ and mπ = m∗. Hence, m is smooth.

Proof. We first prove that m∗ and mσ coincide on the closed elements of A∗.
Let x = (x1, x2, x3) ∈ K(A∗)3. By (P1), we have

mσ(x) =
⋂

{m∗(ϕA(a)) : x ≤ ϕA(a), a ∈ A3}.

Let P ∈ mσ(x). So, P ∈ (ϕA(a1) ∩ ϕA(a2)) ∪ ϕA(a3) for every a ∈ A3 such
that x ≤ ϕA(a). Since x1, x2, x3 ∈ K(A∗), there are F1, F2, F3 ∈ Fi(A) such
that xi =

⋂
ϕA[Fi] for i = 1, 2, 3. Then, we obtain that

P ∈ (ϕA(a1) ∩ ϕA(a2)) ∪ ϕA(a3) (5.3)

for every a ∈ F1 ×F2 ×F3. Suppose that P /∈ m∗(x). Thus, P /∈ (x1 ∩x2)∪x3

and this implies that P /∈ x1 or P /∈ x2, and P /∈ x3. So, F1 ∩ P �= ∅ or
F2 ∩ P �= ∅, and F3 ∩ P �= ∅. If F1 ∩ P �= ∅, then there are b1 ∈ F1 ∩ P and
b3 ∈ F3 ∩ P . It follows that P /∈ ϕA(b1) ∪ ϕA(b3), which is a contradiction by
(5.3). Analogously if F2 ∩ P �= ∅. Hence, mσ(x) ⊆ m∗(x).
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Let P ∈ m∗(x). Let a ∈ A3 be such that x ≤ ϕA(a). Since m∗ is order
preserving, we have m∗(x) ⊆ m∗(ϕA(a)) = ϕA(m(a)). Then P ∈ m∗(ϕA(a))
for every a ∈ A3 such that x ≤ ϕA(a), i.e., P ∈ mσ(x). So, m∗(x) ⊆ mσ(x).
Therefore, m∗(x) = mσ(x) for every x ∈ K(A∗)3.

Now, we prove the general case. Let u = (u1, u2, u3) ∈ A∗3. By (P2), we
have

mσ(u) =
⋃

{mσ(x) : u ≥ x ∈ K(A∗)3} =
⋃

{m∗(x) : u ≥ x ∈ K(A∗)3}.

Since m∗ is order preserving, it follows that mσ(u) ⊆ m∗(u). In order to
prove the other inclusion, let P ∈ m∗(u). Then P ∈ u1 ∩ u2 or P ∈ u3. Let
F = P c ∈ Fi(A) and x =

⋂
ϕA[F ]. We consider the two possible cases:

Case 1: Suppose that P ∈ u1 ∩ u2. Let us see that x ⊆ u1 ∩ u2. Let Q ∈ x.
So, Q ∩ P c = ∅ and thus Q ⊆ P . Since u1 and u2 are downsets of Idpr(A),
Q ∈ u1 ∩u2. As 0∗ ∈ K(A∗), it follows that x = (x, x, 0∗) ∈ K(A∗)3 and x ≤ u.
Moreover, m∗(x) = (x ∪ 0∗) ∩ (x ∪ 0∗) = x and P ∈ x = m∗(x). Thus,

P ∈
⋃

{m∗(x) : u ≥ x ∈ K(A∗)3} = mσ(u),

and hence m∗(u) ⊆ mσ(u).
Case 2: If P ∈ u3, then P ∈ x = m∗(x), where x = (0∗, 0∗, x) ∈ K(A∗)3 and
x ≤ u. Then,

P ∈
⋃

{m∗(x) : u ≥ x ∈ K(A∗)3} = mσ(u)

and we obtain m∗(u) ⊆ mσ(u).
In any case, we have m∗(u) ⊆ mσ(u). Then mσ = m∗. The proof of

mπ = m∗ follows by a dual argumentation. Therefore, m is smooth. �

We now move on to study the extensions of embeddings and onto homo-
morphisms. We will show that the DN-completion commutes with respect to
quotients. Let A and B be distributive nearlattices and let f : A → B be a
homomorphism. Note that f preserves finite joins and existing finite meets. So,
the extensions fσ and fπ coincide, i.e., f is smooth. We write f∗ = fσ = fπ

and we can use for f∗ all the properties valid for fσ and fπ.

Proposition 5.9. Let A and B be distributive nearlattices and let A∗ and B∗

be the DN-completions of A and B, respectively. Let f : A → B be an onto
homomorphism. Then, the extension f∗ : A∗ → B∗ is an onto homomorphism.

Proof. Since f preserves joins and existing meets, it follows by Proposition
5.4 that f∗ preserves arbitrary joins and meets and, in particular, f∗ is a
homomorphism. First, let us see that f∗ is onto with respect to the closed
elements. Let s ∈ K(B∗). So, there is G ∈ Fi(B) such that s =

∧
G. Since

f preserves existing finite meets and f(1) = 1, F = f−1[G] ∈ Fi(A). Let
x =

∧
F ∈ K(A∗). As f is onto, f [F ] = f [f−1[G]] = G. Moreover, by Lemma

3.3, we have that F = {a ∈ A : x ≤ a}. Then

f∗(x) =
∧

{f(a) : x ≤ a} =
∧

f [F ] =
∧

G = s.
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Let now v ∈ B∗. Then

v =
∨

{s ∈ K(B∗) : s ≤ v} =
∨

{f∗(x) : x ∈ K(A∗), f∗(x) ≤ v}.

Let u =
∨

{x ∈ K(A∗) : f∗(x) ≤ v}. Since f∗ preserves arbitrary joins, we
obtain that f∗(u) =

∨
{f∗(x) : x ∈ K(A∗), f∗(x) ≤ v} = v. Therefore, f∗ is

onto. �
Let A be a distributive nearlattice and let A∗ be the DN-completion of A.

Let θ ∈ Con(A) and let πθ : A → A/θ be the natural map. It is clear that πθ is
an onto homomorphism and thus, by Proposition 5.9, π∗

θ : A∗ → (A/θ)∗ is an
onto homomorphism. Let θ∗ = Ker(π∗

θ) ∈ Con(A∗). Hence (A/θ)∗ ∼= A∗/θ∗.
For the following result, we need to restrict ourselves to a smaller class

of homomorphisms between distributive nearlattices.

Definition 5.10. Let A and B be distributive nearlattices and let f : A → B
be a map. We say that f is an s-homomorphism if it is a homomorphism and
the following conditions hold:
(1) for each a1, a2 ∈ A, if f(a1) ∧ f(a2) exists, then a1 ∧ a2 exists,
(2) for each a ∈ A and for each b ∈ B, if f(a) ≤ b, then there is a′ ∈ A such

that a ≤ a′ and f(a′) = b.

Proposition 5.11. Let A and B be distributive nearlattices and let A∗ and B∗

be the DN-completions of A and B, respectively. Let f : A → B be an injective
s-homomorphism. Then, the extension f∗ : A∗ → B∗ is an embedding.

Proof. We know that the extension f∗ is a homomorphism. In order to show
that f∗ is injective, we first prove that f∗(x) ≤ f∗(y) implies x ≤ y, for all
x ∈ K(A∗) and y ∈ O(A∗). By Proposition 5.2, we have

∧
{f(a) : x ≤ a} = f∗(x) ≤ f∗(y) =

∨
{f(a) : a ≤ y}.

So, by Lemma 3.7, there exist b1, . . . , bn ∈ B and a1, . . . , an ∈ A such that
f(ai) ≤ bi and x ≤ ai for every i ∈ {1, . . . , n}, and there exist a′

1, . . . , a
′
m ∈ A

such that a′
j ≤ y for every j ∈ {1, . . . , m} and

b1 ∧ · · · ∧ bn ≤ f(a′
1) ∨ · · · ∨ f(a′

m).

By (2) of Definition 5.10, for each i ∈ {1, . . . , n}, there exists a′′
i ∈ A such that

ai ≤ a′′
i and f(a′′

i ) = bi. Then, by the previous inequality and (1) of Definition
5.10, we obtain that

f(a′′
1 ∧ · · · ∧ a′′

n) = f(a′′
1) ∧ · · · ∧ f(a′′

n)
= b1 ∧ · · · ∧ bn

≤ f(a′
1) ∨ · · · ∨ f(a′

m)

= f(a′
1 ∨ . . . ,∨a′

m).

Since f is injective, it follows that a′′
1 ∧· · ·∧a′′

n ≤ a′
1 ∨· · ·∨a′

m and thus x ≤ y.
Let now u1, u2 ∈ A∗ be such that f∗(u1) = f∗(u2). By (D), u1 =

∨
{x ∈

K(A∗) : x ≤ u1} and u2 =
∧

{y ∈ O(A∗) : u2 ≤ y}. As f∗(u1) = f∗(u2), we
have

∨
{f∗(x) : x ∈ K(A∗), x ≤ u1} =

∧
{f∗(y) : y ∈ O(A∗), u2 ≤ y}.
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Thus, f∗(x) ≤ f∗(y) and by what we have already proved, x ≤ y for every
x ∈ K(A∗) such that x ≤ u1 and for every y ∈ O(A∗) such that u2 ≤ y. Then

u1 =
∨

{x ∈ K(A∗) : x ≤ u1} ≤
∧

{y ∈ O(A∗) : u2 ≤ y} = u2,

i.e., u1 ≤ u2. Similarly, we have u2 ≤ u1. Therefore, f∗ is injective. �

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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