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A TOPOLOGICAL DUALITY FOR MILDLY DISTRIBUTIVE
MEET-SEMILATTICES

SERGIO A. CELANI AND LUCIANO J. GONZÁLEZ

Abstract. We develop a topological duality for the category of mildly dis-
tributive meet-semilattices with a top element and certain morphisms between
them. Then, we use this duality to characterize topologically the lattices of
Frink ideals and filters, and we also obtain a topological representation for
some congruences on mildly distributive meet-semilattices.

1. Introduction

Duality theory for ordered algebraic structures goes back to Stone’s pioneering
work [15]. He proved that the category of Boolean algebras and Boolean homo-
morphisms is dually equivalent to the category of Boolean spaces (compact and
totally disconnected spaces) and continuous maps. This duality was generalized
to distributive lattices by Stone himself [16]. He showed a duality between the
category of distributive lattices and lattice homomorphisms and the category of
spectral spaces (sober spaces in which the compact open sets form a base that is
closed under finite intersections) and spectral functions (functions whose inverse
image sends compact open sets to compact open sets).

A different approach was used by Priestley [14] to obtain a topological duality
for distributive lattices in term of ordered Hausdorff topological spaces, later known
as Priestley spaces.

These two approaches have been followed to obtain topological dualities for sev-
eral ordered algebraic structures. In particular, for distributive meet-semilattices
[5, 2], for implicative meet-semilattices [1], for distributive nearlattices [3] and also
in a more general setting: For a class of partially ordered sets satisfying a distribu-
tivity condition [7, 10].
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We focus in this paper on mildly distributive meet-semilattices with a top el-
ement. The mild distributivity condition was introduced and studied by Hick-
man [12]. He paid particular attention to the study of morphisms and congruences
on these structures. Recently, we have continued the algebraic study of mildly dis-
tributive meet-semilattices in [4]; we obtained new characterizations of the mildly
distributivity condition, and we studied the collections of Frink ideals and filters.

Now, in the present article, we develop a dual equivalence between the cate-
gory of mildly distributive meet-semilattices and strong homomorphisms and the
category of certain topological spaces and particular continuous maps. We follow
the topological approach of Stone to achieve our aim. Then, we use this topo-
logical duality to obtain topological representations for the lattices of filters and
Frink ideals of mildly distributive meet-semilattices and finally, we get a topological
representation for some congruences.

The paper is organized as follows. In Section 2, we introduce some basic facts
needed for what follows. In Section 3, we present the definition of mildly distribu-
tivity on semilattices, and we show some known results in the literature. We also
introduce the morphisms between mildly distributive semilattices, called strong
homomorphisms, which are important for the aim of the paper. We show in Sec-
tion 4 a set-theoretic representation for mildly distributive semilattices. Then, in
Section 5, we present the definition of the md-spaces and we develop a categorical
dual equivalence between the mildly distributive semilattices and the md-spaces.
Section 6 is devoted to obtain topological representations of the lattices of Frink
ideals and filters. We show that the Frink ideals of a mildly distributive semilattice
correspond to some particulars subsets of its dual md-space and the filters are in
correspondence with a subclass of closed subsets. Lastly, in Section 7, we show a
correspondence between some congruences on a mildly distributive semilattice and
some subspaces of its dual md-space.

2. Preliminaries

In this section, we introduce the main notions and results for what follows in
the paper. We assume that the reader is familiar with elementary order theoretical
concepts (see [6]).

Let f : X → Y be a function. Let A ⊆ X and B ⊆ Y . We denote the image of
the subset A by f [A] = {f(a) : a ∈ A} and the inverse image of the subset B by
f−1[B] = {x ∈ X : f(x) ∈ B}. By f−1() : P(Y ) → P(X) we denote the inverse
image function, that maps every set B ⊆ Y to f−1(B) = f−1[B].

Let P = 〈P,≤〉 be a poset. A subset Y ⊆ P is a downset of P provided that
for every b ∈ P if b ≤ a for some a ∈ Y , then b ∈ Y . Dually, it is an upset if
for every b ∈ P , if a ≤ b for some a ∈ Y , then b ∈ Y . For a ∈ P , (a] denotes
the downset set {b ∈ P : b ≤ a} and [a) denotes the upset {b ∈ P : a ≤ b}. If
Y ⊆ P , let Y u := {a ∈ P : (∀y ∈ Y )(y ≤ a)} the set of all upper bounds of Y and
Y l := {a ∈ P : (∀y ∈ Y )(a ≤ y)} the set of all lower bounds of Y . Note that if
a ∈ P , then (a] = {a}ul and [a) = {a}lu.
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A meet-semilattice is an algebra L = 〈L,∧〉 of type (2) such that the operation ∧
is idempotent, commutative and associative. As usual, a partial order ≤ is defined
by a ≤ b if and only if a∧ b = a. A meet-semilattice with top element is an algebra
〈L,∧, 1〉 of type (2, 0) such that 〈L,∧〉 is a meet-semilattice and a ∧ 1 = a for all
a ∈ L and a bounded meet-semilattice is an algebra 〈L,∧, 0, 1〉 of type (2, 0, 0) such
that 〈L,∧, 1〉 is a meet-semilattice with top element and a ∧ 0 = 0 for all a ∈ L.

Let L be a meet-semilattice. A nonempty subset F ⊆ L is said to be a filter of L
if (i) it is an upset of L and (ii) a, b ∈ F implies a∧b ∈ F . We denote the collection
of all filters of L by Fi(L). It is easy to check that an arbitrary intersection of filters
of L is either the empty set or a filter. Thus, for a nonempty subset X of L, there
exists the least filter of L that contains X; we denote this filter by Fig(X). A filter
F ∈ Fi(L) is proper if F 6= L. A proper filter F of L is called meet-prime when
for all filters F1, F2 of L, F1 ∩ F2 ⊆ F implies F1 ⊆ F or F2 ⊆ F . We denote by
Fimpr (L) the family of all meet-prime filters of L.

Since in a meet-semilattice the join of two elements may not exist, the notion of
ideal, which generalizes the usual notion of ideal for lattices, has several possible
definitions. Here we need two of them. Let L be a meet-semilattice. A subset
I ⊆ L is said to be a Frink ideal of L if for every finite X ⊆ I, Xul ⊆ I (cf. [9]).
Let us denote by FId(L) the collection of all Frink ideals of L. It should be noted
that the empty set may be a Frink ideal, this depend on whether or not the meet-
semilattice has bottom element. It is clear that Frink ideals are downsets. It is
easy to show that a subset I ⊆ L is a Frink ideal if and only if for every finite A ⊆ I
and c ∈ L,

⋂
a∈A[a) ⊆ [c) implies c ∈ I; moreover if L has bottom element, then in

the previous characterization of Frink ideals is enough to consider only nonempty
finite subsets A ⊆ I.

It is known that FId(L) is an algebraic closure system and its associated closure
operator is defined by: For X ⊆ L,

〈X〉 =
{
a ∈ L :

⋂
x∈X0

[x) ⊆ [a) for some finite X0 ⊆ X
}
.

Hence, we have that FId(L) is a complete lattice with respect to the inclusion order.
On the other hand, a nonempty subset I ⊆ L is said to be an order ideal of L if
(i) it is a downset of L and (ii) for every a, b ∈ I there is c ∈ I such that a, b ≤ c.
It is easily checked that every order ideal is a Frink ideal.

Lemma 2.1. Let L be a meet-semilattice. Let F be a proper filter of L. Then, F
is meet-prime if and only if L \ F is an order ideal of L.

There is another possible notion of “prime” filter in the framework of meet-
semilattices, which will be fundamental to develop our topological duality for the
category of mildly distributive meet-semilattices. The notion of an optimal filter
has been considered by Bezhanishvili and Jansana [1, 2], among others.

Definition 2.2. Let L be a meet-semilattice. A proper filter F of L is called
optimal if L \F is a Frink ideal. We denote by Opt(L) the collection of all optimal
filters of L.
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It should be noted that a filter P of a bounded meet-semilattice L is optimal if
and only if for all a1, . . . , an, a ∈ L, if a1, . . . , an /∈ P and [a1) ∩ · · · ∩ [an) ⊆ [a),
then a /∈ P .

Now we present some topological notions needed in the article. We assume that
the reader is familiar with elementary topological concepts. Our primary reference
for general topology is [8].

Let 〈X, T 〉 be a topological space. Let us denote by C(X) the collection of all
closed subsets of X. For a subset Y ⊂ X, cl(Y ) denotes the topological closure of
Y , that is, cl(Y ) =

⋂
{A ∈ C(X) : Y ⊆ A}. For x ∈ X, we write cl(x) instead of

cl({x}).
A closed subset A of a topological space X is called irreducible when for all

closed subsets B and C of X, if A ⊆ B ∪ C, then A ⊆ B or A ⊆ C. A topological
space X is said to be sober when for every irreducible closed subset A of X there
exists a unique element x ∈ X such that A = cl(x). For more information about
sober spaces, we refer the reader to [13].

3. Mildly distributive meet-semilattices

The algebraic concepts on mildly distributive meet-semilattices presented in this
section are due to Hickman [12] and due to us [4]; we direct the reader to these
references for more details.

Definition 3.1. A mildly distributive meet-semilattice (md-semilattice for short)
is a meet-semilattice L = 〈L,∧〉 such that the lattice FId(L) is a distributive lattice.

Theorem 3.2 ([12]). Let L be a meet-semilattice. Then, L is mildly distributive
if and only if for all a1, . . . , an ∈ L and a ∈ L, if [a1) ∩ · · · ∩ [an) ⊆ [a), then
a = (a ∧ a1) ∨ (a ∧ a2) ∨ · · · ∨ (a ∧ an).

Theorem 3.3 ([4]). Let L be an md-semilattice. Let F be a filter and I a Frink
ideal of L. If F ∩ I = ∅, then there exists an optimal filter P of L such that F ⊆ P
and I ∩ P = ∅.

Proof. It is a consequence of Zorn’s lemma. �

The following corollary will be useful in what follows.

Corollary 3.4. Let L be an md-semilattice.
(1) If F is a filter of L and a ∈ L is such that a /∈ F , then there exists an optimal

filter P of L such that F ⊆ P and a /∈ P .
(2) If a � b, then there exists P ∈ Opt(L) such that a ∈ P and b /∈ P .

Let L and M be meet-semilattices. A map h : L→M is said to be a homomor-
phism if for all a, b ∈ L we have that h(a ∧ b) = h(a) ∧ h(b). A homomorphism
h : L → M is called a join-homomorphism∗ if h preserves all existing finite joins,
that is, if a1, . . . , an ∈ L and a1 ∨ · · · ∨an there exists in L, then h(a1)∨ · · · ∨h(an)
there exists in M and equal to h(a1 ∨ · · · ∨ an). We say that a map h : L → M

∗In [12], the join-homomorphisms are called join partial homomorphisms.
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is a strong homomorphism (see [12] and [2]) if it is a homomorphism and for all
a1, . . . , an, a ∈ L,

[a1) ∩ · · · ∩ [an) ⊆ [a) =⇒ [h(a1)) ∩ · · · ∩ [h(an)) ⊆ [h(a))
holds.

Let L and M be meet-semilattices. If h : L → M is a strong homomorphism,
then h is a join-homomorphism and the converse is not always true. But, if L is
an md-semilattice and M is an arbitrary meet-semilattice, then a map h : L →
M is a strong homomorphism iff it is a join-homomorphism (this can be seen
in [12]). Thus, strong homomorphisms and join-homomorphisms coincide for md-
semilattices. Now, we present another characterization of strong homomorphisms
between md-semilattices.

Proposition 3.5 ([4]). Let L and M be md-semilattices having top elements and
let h : L → M be an order-preserving map that preserves top elements. Then, the
following conditions are equivalent:
(1) h is a strong homomorphism;
(2) for every Q ∈ Opt(M), h−1(Q) ∈ Opt(L) ∪ {L}.

4. Representation theorem for md-semilattices

Let 〈L,∧, 1〉 be an md-semilattice with top element 1. All the md-semilattices
considered in the rest of the paper will have top element.

Recall that Opt(L) denotes the collection of all optimal filters of L. Let us
consider the set X(L) := Opt(L) ∪ {L} and the following map ϕL : L → P(X(L))
defined by

ϕL(a) = {P ∈ X(L) : a ∈ P}
for each a ∈ L. Let us consider the following families:

D(X(L)) := ϕL [L] = {ϕL(a) : a ∈ L} and KL := {ϕL(a)c : a ∈ L} ,
where for every a ∈ L, ϕL(a)c = X(L) \ ϕL(a) = {P ∈ X(L) : a /∈ P}.

Notice that for every a, b ∈ L, we have ϕL(a) ∩ ϕL(b) = ϕL(a ∧ b) and ϕL(1) =
X(L). Then, 〈D(X(L)),∩,X(L)〉 is a meet-semilattice with top element. As a
consequence of Corollary 3.4 we have the following result:

Proposition 4.1. The map ϕL : L→ D(X(L)) is an isomorphism of meet-semilattices
with top element.

Since ϕL is an isomorphism, it follows that ϕL preserves all existing finite joins
of L. Moreover, if a, b ∈ L are such that a ∨ b exists in L, then

ϕL(a ∨ b) = ϕL(a) ∪ ϕL(b).
For every md-semilattice L we define the structure

X(L) = 〈X(L), TL,KL〉
where TL is a topology on X(L) generated by the family KL. That is, TL is the
collection of all unions of finite intersections of members of KL. In other words,
KL is a subbase for a topology TL on X(L).
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Proposition 4.2. Let L be an md-semilattice. Then,
(1) the subbase KL is closed under finite unions and ∅ ∈ KL;
(2) 〈X(L), TL〉 is T0-space;
(3)

⋂
a∈L ϕL(a) = {L};

(4) for every a ∈ L, ϕL(a)c is a compact open subset of the space X(L);
(5) for all nonempty subsets A and B of L such that⋂

{ϕL(a) : a ∈ A} ⊆
⋃
{ϕL(b) : b ∈ B},

there exist {a1, . . . , an} ⊆ A and {b1, . . . , bm} ⊆ B such that
ϕL (a1) ∩ · · · ∩ ϕL (an) ⊆ ϕL (b1) ∪ · · · ∪ ϕL (bm) .

Proof. Properties (1)–(3) are immediate consequences of the definition of the map
ϕL and the construction of the structure 〈X(L), TL,KL〉.

(4) Let a ∈ L. In order to prove that ϕL(a)c is compact we use that KL is a
subbase for X(L). So, let {ai : i ∈ I} ⊆ L be such that ϕL(a)c ⊆

⋃
i∈I ϕL(ai)c.

Thus,
⋂
i∈I ϕL(ai) ⊆ ϕL(a). We consider the filter F := Fig({ai : i ∈ I}). If a /∈ F ,

then by Corollary 3.4 there is an optimal filter P such that F ⊆ P and a /∈ P . So,
P ∈

⋂
i∈I ϕL(ai) and P /∈ ϕL(a), which is a contradiction. Thus, we have a ∈ F .

Then, there exist i1, . . . , in ∈ I such that ai1∧· · ·∧ain ≤ a. Now, by Proposition 4.1,
we obtain ϕL(ai1)∩· · ·∩ϕL(ain) ⊆ ϕL(a). Hence, ϕL(a)c ⊆ ϕL(ai1)c∪· · ·∪ϕL(ain)c
and therefore this implies that ϕL(a)c is compact.

(5) Let A,B ⊆ L be such that⋂
{ϕL (a) : a ∈ A} ⊆

⋃
{ϕL (b) : b ∈ B} .

Let F be the filter generated by A and let I be the Frink ideal generated by B.
Then F ∩ I 6= ∅. Otherwise, by Theorem 3.3, there exists P ∈ Opt(L) such that
F ⊆ P and I ∩ P = ∅. So, P ∈

⋂
{ϕL (a) : a ∈ A} and P /∈

⋃
{ϕL (b) : b ∈ B},

which is impossible. Now, since F ∩ I 6= ∅, there exist {a1, . . . , an} ⊆ A and
{b1, . . . , bm} ⊆ B such that [b1) ∩ · · · ∩ [bm) ⊆ [a1 ∧ · · · ∧ an). Hence, we obtain
that ϕL (a1) ∩ · · · ∩ ϕL (an) ⊆ ϕL (b1) ∪ · · · ∪ ϕL (bm). �

Remark 4.3. By Proposition 4.1, we have
[a1) ∩ · · · ∩ [an) ⊆ [a) ⇐⇒ a ∈ {a1, . . . , an}ul

⇐⇒ ϕL(a) ∈ {ϕL(a1), . . . , ϕL(an)}ul

⇐⇒ [ϕL(a1)) ∩ · · · ∩ [ϕL(an)) ⊆ [ϕL(a))
for all a1, . . . , an, a ∈ L.

Proposition 4.4. Let L be an md-semilattice and let a1, . . . , an, a ∈ L. Then,
[ϕL(a1)) ∩ · · · ∩ [ϕL(an)) ⊆ [ϕL(a))⇐⇒ ϕL(a) ⊆ ϕL(a1) ∪ · · · ∪ ϕL(an).

Proof. ⇒) Assume that [ϕL(a1)) ∩ · · · ∩ [ϕL(an)) ⊆ [ϕL(a)) and suppose that
P ∈ ϕL(a) and P /∈ ϕL(a1) ∪ · · · ∪ ϕL(an). So, a ∈ P and a1, . . . , an /∈ P . By the
previous remark we have that [a1) ∩ · · · ∩ [an) ⊆ [a). Since P is optimal, it follows
that a ∈ L \ P , which is a contradiction.
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⇐) Reciprocally, assume that ϕL(a) ⊆ ϕL(a1) ∪ · · · ∪ ϕL(an). Let ϕL(x) ∈
[ϕL(a1))∩ · · · ∩ [ϕL(an)). So, it is clear that ϕL(a1)∪ · · · ∪ϕL(an) ⊆ ϕL(x). Then,
ϕL(x) ∈ [ϕL(a)). �

Remark 4.5. Let L be a bounded distributive lattice. It is straightforward to
check directly that the collections of meet-prime filters and optimal filters co-
incide and Frink ideals are exactly the ideals in lattice. Thus, if we consider
X(L)∗ := X(L) \ {L} = Opt(L) instead of X(L) for the topological construction
of this section, then we obtain the classical representation theorem for bounded
distributive lattices due to Stone [16]; see also [11, II-5].

5. A duality for md-semilattices

We will say that a structure 〈X, T ,K〉 is a topological space with a subbase K if
〈X, T 〉 is a topological space and K is a distinguished subbase of the topology T .
For every topological space 〈X, T ,K〉 with a subbase K, we consider the set

DK(X) = {A ⊆ X : Ac ∈ K}

and the poset 〈DK(X),⊆〉. For brevity, and when there is no danger of confusion,
we omit the subscript K.

Definition 5.1. An md-space is a topological space 〈X, T ,K〉 with a subbase K
such that:
(1) K is a family of compact and open subsets of the topology T closed under finite

unions and ∅ ∈ K;
(2) 〈X, T 〉 is a T0-space;
(3)

⋂
{A : A ∈ D(X)} 6= ∅;

(4) for every subset {A1, . . . , An, A} ⊆ D(X),

[A1) ∩ · · · ∩ [An) ⊆ [A)⇐⇒ A ⊆ A1 ∪ · · · ∪An;

(5) for all nonempty families A and B of elements of D(X), if
⋂
A ⊆

⋃
B then

there exist {A1, . . . , An} ⊆ A and {B1, . . . , Bm} ⊆ B such that

A1 ∩ · · · ∩An ⊆ B1 ∪ · · · ∪Bm.

For simplicity, we will sometimes say that X is an md-space, understanding
that there is a distinguished subbase K defining the topology T corresponding to
space X.

By condition (1) of the definition of md-spaces, it follows that for every md-space
〈X, T ,K〉, 〈D(X),∩, X〉 is a meet-semilattice with top element.

Proposition 5.2. Let X be an md-space. Then, the meet-semilattice D(X) is
mildly distributive.

Proof. It is a consequence of condition (4) of Definition 5.1 and Theorem 3.2. �

Proposition 5.3. Let L be an md-semilattice. Then, 〈X(L), TL,KL〉 is an md-
space.
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Proof. It follows from the definition of 〈X(L), TL,KL〉 and by Propositions 4.2
and 4.4. �

For every md-semilattice L, 〈X(L), TL,KL〉 is called the dual md-space of L.
Now, the following corollary is an immediate consequence from the previous propo-
sition and Proposition 4.1.

Corollary 5.4. For every md-semilattice L, there exists an md-space 〈X, T ,K〉
such that L is isomorphic to the md-semilattice D(X).

Let 〈X, T ,K〉 be an md-space. We define the map HX : X → X (D(X)) by
HX(x) = {A ∈ D(X) : x ∈ A}

for each x ∈ X. Let us see that HX is well defined. Let x ∈ X. It is clear that
HX(x) is a filter of the md-semilattice D(X). If HX(x) = D(X), then HX(x) ∈
X(D(X)). Assume that HX(x) 6= D(X). Now, in order to show that HX(x) is
optimal, let A1, . . . , An /∈ HX(x) and let A ∈ D(X) be such that [A1)∩· · ·∩ [An) ⊆
[A). So, x /∈ A1∪· · ·∪An and A ⊆ A1∪· · ·∪An. Then, x /∈ A and thus A /∈ HX(x).
Therefore, HX(x) ∈ X (D(X)).

Theorem 5.5. Let 〈X, T ,K〉 be a topological space satisfying conditions (1)–(4)
of Definition 5.1. Then, the following conditions are equivalent:
(1) For all nonempty families A and B of elements of D(X), if

⋂
A ⊆

⋃
B then

there exist {A1, . . . , An} ⊆ A and {B1, . . . , Bm} ⊆ B such that
A1 ∩ · · · ∩An ⊆ B1 ∪ · · · ∪Bm.

(2) The map HX : X → X(D(X)) is onto.

Proof. (1)⇒ (2) Let P ∈ X(D(X)). Suppose that P = D(X). By condition (3) of
Definition 5.1, there exists x ∈ X such that HX(x) = D(X) = P . Thus, we assume
that P ∈ Opt(D(X)). We prove that⋂

{A : A ∈ P} ∩
⋂
{Bc : B /∈ P} 6= ∅. (5.1)

Suppose towards a contradiction that
⋂
{A : A ∈ P} ⊆

⋃
{B : B /∈ P}. Thus,

there exist finite families {A1, . . . , An} ⊆ P and {B1, . . . , Bm} ⊆ D(X) \ P such
that A1∩· · ·∩An ⊆ B1∪· · ·∪Bm. As P is a filter, we have A := A1∩· · ·∩An ∈ P .
Then [B1)∩· · ·∩[Bm) ⊆ [A). Since B1, . . . , Bm /∈ P and P is optimal, we have that
A /∈ P , which is impossible. Therefore, (5.1) is valid. Then, there exists x ∈ X
such that x ∈

⋂
{A : A ∈ P}∩

⋂
{Bc : B /∈ P}. Now, it is straightforward to show

directly that HX(x) = P . Hence HX is onto.
(2)⇒ (1) LetA,B ⊆ D(X) be nonempty and such that

⋂
A ⊆

⋃
B. We consider

the filter F of D(X) generated by A and the Frink ideal I of D(X) generated by
B. Suppose that F ∩ I = ∅. Since D(X) is an md-semilattice, it follows by
Theorem 3.3 that there exists P ∈ Opt(D(X)) such that F ⊆ P and P ∩ I = ∅.
Then, since the map HX is onto, there exists x ∈ X such that HX(x) = P .
Thus x ∈

⋂
A; this implies that there exists B ∈ B such that x ∈ B, which

is impossible. Therefore, F ∩ I 6= ∅. Then, there exists C ∈ F ∩ I. It follows
that there are finite subsets {A1, . . . , An} ⊆ A and {B1, . . . , Bm} ⊆ B such that
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A1 ∩ · · · ∩An ⊆ C and [B1)∩ · · · ∩ [Bm) ⊆ [C). By condition (4) of Definition 5.1,
the last inclusion is equivalent to C ⊆ B1 ∪ · · · ∪ Bm and hence, we obtain that
A1 ∩ · · · ∩An ⊆ B1 ∪ · · · ∪Bm. �

Lemma 5.6. If 〈X, T ,K〉 is an md-space, then 〈X, T 〉 is a sober space.

Proof. Let F be an irreducible closed subset of X. Consider the set
PF = {A ∈ D(X) : F ⊆ A}.

It is straightforward to show that PF is a filter of D(X). Now let B1, . . . , Bn /∈ PF
and let B ∈ D(X) be such that [B1) ∩ · · · ∩ [Bn) ⊆ [B). Suppose that B ∈ PF .
That is, F ⊆ B. By condition (4) of Definition 5.1, we have B ⊆ B1 ∪ · · · ∪ Bn
and this implies that F ⊆ B1 ∪ · · · ∪ Bn. Since F is irreducible, it follows that
F ⊆ Bi for some i ∈ {1, . . . , n}. Then Bi ∈ PF , which is a contradiction. Hence
B /∈ PF . Thus, we have proved that PF is an optimal filter or PF = D(X). That
is, PF ∈ X(D(X)).

Now by Theorem 5.5, there exists x ∈ X such that HX(x) = PF . We show
that F = cl(x). Given that HX(x) = PF and K is a subbase of X, we have
x ∈ F . So cl(x) ⊆ F . Now, let y ∈ F . Let B ∈ D(X) be such that x ∈ B. Thus
B ∈ HX(x) = PF . So, we have F ⊆ B and hence y ∈ B. Then, we obtain that
y ∈ cl(x). Hence, F ⊆ cl(x). Thus, F = cl(x). Therefore, since X is a T0-space, X
is a sober space. �

Let 〈X, T ,K〉 be an md-space. Since D(X) is an md-semilattice, we can consider
its dual md-space

X(D(X)) =
〈
X (D(X)) , TD(X),KD(X)

〉
as defined in the previous section, with

X(D(X)) = Opt(D(X)) ∪ {D(X)} and KD(X) = {ϕL(A)c : A ∈ D(X)}.
Moreover, for every A ∈ D(X), ϕL(A) = {P ∈ X(D(X)) : A ∈ P}.

Proposition 5.7. For every md-space 〈X, T ,K〉, the map HX from X onto X (D(X))
is a homeomorphism and KD(X) = {HX [U ] : U ∈ K}.

Proof. Since X is a T0-space, it follows that HX is injective; by Theorem 5.5, we
obtain that HX is onto. A subbasic open set of the space X(D(X)) is of the form
ϕL(A)c = {P ∈ X(D(X)) : A /∈ P} with A ∈ D(X). For every x ∈ X, we have
that

x ∈ H−1
X [ϕL(A)c] ⇐⇒ HX(x) ∈ ϕL(A)c ⇐⇒ A /∈ HX(x) ⇐⇒ x ∈ Ac.

Then H−1
X [ϕL(A)c] = Ac ∈ K and therefore the map HX is continuous. In order

to prove that HX is an open map, let U ∈ K. For every P ∈ X(D(X)), we have

P ∈ HX [U ] ⇐⇒ P = HX(x) for some x ∈ U
⇐⇒ U c /∈ P ⇐⇒ P ∈ ϕL(U c)c.

Then, HX [U ] = ϕL(U c)c ∈ KD(X) and hence HX is an open map. This completes
the proof. �
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We have shown that the corresponding dual topological structures to the md-
semilattices are the md-spaces. Now we focus on the morphisms between md-
spaces that correspond to the strong homomorphisms between md-semilattices that
preserve top element.

Definition 5.8. Let 〈X1, T1,K1〉 and 〈X2, T2,K2〉 be md-spaces. We say that a
map f : X1 → X2 is strongly continuous if for every V ∈ K2, we have f−1[V ] ∈ K1.

Observe that each strongly continuous map is in particular a continuous map.

Proposition 5.9. Let 〈X1, T1,K1〉 and 〈X2, T2,K2〉 be md-spaces and let f : X1 →
X2 be a strongly continuous map. Then, the map f−1 : DK2(X2) → DK1(X1) is a
strong homomorphism preserving the top elements.

Proof. It is clear that f−1 is a homomorphism preserving the top elements between
the meet-semilattices DK2(X2) and DK1(X1). Let B1, . . . , Bn, B ∈ DK2(X2) be
such that [B1) ∩ · · · ∩ [Bn) ⊆ [B). By condition (4) of Definition 5.1, we have
B ⊆ B1 ∪ · · · ∪ Bn. Then, f−1(B) ⊆ f−1(B1) ∪ · · · ∪ f−1(Bn). Using again
condition (4) we obtain that

[
f−1(B1)

)
∩ · · · ∩

[
f−1(Bn)

)
⊆
[
f−1(B)

)
. Therefore,

f−1 is a strong homomorphism. �

Remark 5.10. From Proposition 5.7, it follows that for every md-space X, the
homeomorphism HX : X → X(D(X)) and its inverse image H−1

X are strongly con-
tinuous maps.

Let 〈X, TX ,KX〉 and 〈Y, TY ,KY 〉 be topological spaces with subbases. Let us
say that a map f : X → Y is a strong homeomorphism if f is a homeomorphism
from 〈X, TX〉 onto 〈Y, TY 〉 and KY = {f [U ] : U ∈ KX}.

Proposition 5.11. Let L and M be md-semilattices and let h : L→M be a strong
homomorphism preserving top elements. Then, the map h−1 : X(M) → X(L) is a
strongly continuous map from X(M) to X(L).

Proof. By Proposition 3.5, we know that h−1 is well defined. Let a ∈ L and
Q ∈ X(M). Then, we have

Q ∈
(
h−1)−1 [ϕL(a)c] ⇐⇒ h−1(Q) ∈ ϕL(a)c ⇐⇒ a /∈ h−1(Q)

⇐⇒ h(a) /∈ Q ⇐⇒ Q ∈ ϕL(h(a))c.

Hence,
(
h−1)−1 [ϕL(a)c] = ϕ(h(a))c ∈ KM . Therefore h−1 is a strongly continuous

map from md-space X(M) to X(L). �

Let us denote by TMD the category whose objects are the md-semilattices with
a top element and the morphisms are the strong homomorphisms preserving top
elements. Let MDS be the category of all md-spaces and all strongly continuous
maps. It is clear that in both categories TMD and MDS the composition is the
standard composition of maps, and the identity morphisms are the identity maps.
Notice that the isomorphisms of the category TMD are the meet-isomorphisms and
the isomorphisms of the category MDS are the strong homeomorphisms. Now we
are in condition to present the main result of this article.
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L M

D(X(L)) D(X(M))

ϕL

h

∆(Γ(h))

ϕM

X Y

X(D(X)) X(D(Y ))

HX

f

Γ(∆(f))

HY

Figure 1. Commutative diagrams of morphisms in TMD and MDS.

Theorem 5.12. The categories TMD and MDS are dually equivalent via the fol-
lowing functors:
(1) Γ: TMD→MDS is defined by:

• For each md-semilattice L, Γ(L) = 〈X(L), TL,KL〉;
• if h : L → M is a morphism of TMD, then Γ(h) : X(M) → X(L) is given

by Γ(h) = h−1;
(2) ∆: MDS→ TMD is defined by:

• For each md-space 〈X, T ,K〉, ∆(X) = 〈DK(X),∩, X〉;
• for every morphism f : X → Y of MDS, ∆(f) : ∆(Y )→ ∆(X) is defined

by ∆(f) = f−1.

Proof. Notice that it is straightforward to check directly that Γ(j ◦h) = Γ(h)◦Γ(j)
whenever h : L→M and j : M → N are morphisms of TMD and ∆(g◦f) = ∆(f)◦
∆(g) if f : X → Y and g : Y → Z are morphisms ofMDS; moreover Γ(idL) = idX(L)
and ∆(idX) = idD(X) for every md-semilattice L and every md-space 〈X, T ,K〉.
Hence, by Propositions 5.2 and 5.3, we obtain that Γ and ∆ are functors. Now,
we only need to prove that, for every morphism h : L → M of the category TMD
and for every morphism f : X → Y of the category MDS the diagrams in Figure 1
commute.

To this end, let a ∈ L. For Q ∈ X(M), we have,

Q ∈ (∆(Γ(h)) ◦ ϕL) (a) ⇐⇒ Q ∈ (Γ(h))−1 (ϕL(a)) ⇐⇒ Γ(h)(Q) ∈ ϕL(a)
⇐⇒ h−1(Q) ∈ ϕL(a) ⇐⇒ a ∈ h−1(Q) ⇐⇒ h(a) ∈ Q

⇐⇒ Q ∈ ϕM (h(a)) ⇐⇒ Q ∈ (ϕM ◦ h)(a).

Hence, ∆(Γ(h)) ◦ ϕL = ϕM ◦ h. Now, let x ∈ X. For B ∈ D(Y ), we have,

B ∈ (Γ (∆(f)) ◦HX) (x) ⇐⇒ B ∈ (∆(f))−1 (HX(x))
⇐⇒ ∆(f)(B) ∈ HX(x) ⇐⇒ f−1(B) ∈ HX(x) ⇐⇒ x ∈ f−1(B)

⇐⇒ f(x) ∈ B ⇐⇒ B ∈ HY (f(x)) ⇐⇒ B ∈ (HY ◦ f) (x).

Thus Γ (∆(f))◦HX = HY ◦f . Therefore, the functors Γ and ∆ are dual equivalences
and thus the categories TMD and MDS are dually equivalent. �

We end this section with the following consequence of the previous duality the-
orem. We leave the details to the reader.
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Proposition 5.13. Let L and M be md-semilattices and h : L → M a strong
homomorphism preserving top element. Then:
(1) h is injective iff h−1 : X(M)→ X(L) is onto;
(2) h is onto iff h−1 is injective;
(3) h is a meet-isomorphism iff h−1 is a strong homeomorphism.

6. Subbasic saturation and the connection between filters and
closed sets

In this section, we establish the connections between Frink ideals and filters of
an md-semilattice and particular saturated subsets and closed subsets of its dual
md-space, respectively.

Definition 6.1. Let 〈X, T ,K〉 be an md-space. A subset Y ⊆ X is called a
saturated subbasic subset of X if it is an intersection of subbasic open sets of K,
i.e., Y =

⋂
{U ∈ K : Y ⊆ U}.

Let us denote by SatK(X) the set of all saturated subbasic subsets of 〈X, T ,K〉.
It is straightforward to show directly that SatK(X) is closed under arbitrary inter-
sections. Then, it is a closure system. We denote by SatK(.) the closure operator
associated with the closure system SatK(X). Thus, for every subset Y ⊆ X,
SatK(Y ) is the smallest saturated subbasic subset of X containing Y . If Y = {y},
we write SatK(y) instead of SatK({y}). Notice that 〈SatK(X),∩,∨, ∅, X〉, where∨
i∈I Yi = SatK

(⋃
i∈I Yi

)
, is a complete lattice.

Theorem 6.2. Let L be an md-semilattice and 〈X(L), TL,KL〉 its dual md-space.
Then, the map β : FId(L)→ SatKL(X(L)) defined by

β(I) = {P ∈ X(L) : P ∩ I = ∅}
for each I ∈ FId(L) is a dual lattice isomorphism.

Proof. It is clear that β is well-defined because β(I) =
⋂
{ϕ(a)c : a ∈ I} ∈

SatKL(X(L)) for every I ∈ FId(L). Now we prove that I ⊆ J iff β(J) ⊆ β(I)
for each I, J ∈ FId(L). On the one hand, if I ⊆ J , then by definition of β it
follows that β(J) ⊆ β(I). On the other hand, if we suppose that I * J , then there
exists a ∈ I such that a /∈ J . Thus, there exists Q ∈ Opt(L) such that a ∈ Q and
Q ∩ J = ∅. Then, Q ∈ β(J) and Q /∈ β(I). This implies that β(I) * β(J). Hence
β is a dual order-embedding.

Lastly, we prove that β is onto. Let Y ∈ SatKL(X(L)). Thus, there exists B ⊆ L
such that Y =

⋂
{ϕ(a)c : a ∈ B}. Consider the Frink ideal I of L generated by B,

i.e.,
I = 〈B〉 = {b ∈ L : (∃ {b1, . . . , bn} ⊆ B)([b1) ∩ · · · ∩ [bn) ⊆ [b))} .

We prove that β(I) = Y . Let P ∈ β(I). Then I ∩ P = ∅ and thus B ∩ P = ∅.
We thus obtain P ∈

⋂
{ϕ(b)c : a ∈ B} = Y . So, β(I) ⊆ Y . In order to prove

the inverse inclusion, let P ∈ Y . Suppose that P /∈ β(I), i.e., I ∩ P 6= ∅. Then,
there exists a ∈ P and b1, . . . , bn ∈ B such that [b1) ∩ · · · ∩ [bn) ⊆ [a). As P is
optimal, we have that bi ∈ P for some bi ∈ {b1, . . . , bn}. Then, P ∈ ϕ(bi) and thus
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P /∈
⋂
{ϕ(b)c : b ∈ B} = Y , which is a contradiction. So, P ∈ β(I) and hence we

have Y ⊆ β(I). Therefore Y = β(I). This completes the proof. �

Let 〈X, T ,K〉 be an md-space. Recall that DK(X) = {U c : U ∈ K}. We denote
by CK(X) the family of all closed subsets of X that are arbitrary intersections of
elements of DK(X). That is, CK(X) is the closure system on X generated by the
family DK(X). So, CK(X) is a complete lattice. The elements of CK(X) are called
subbasic closed subsets.

Let L be an md-semilattice and X(L) its dual md-space. It should be noted that
the subbasic closed subsets of X(L) are of the form

⋂
a∈A ϕ(a) with A ⊆ L. We

define the following maps. Let Φ: CKL(X(L))→ Fi(L) be defined by
Φ(Y ) = FY := {a ∈ L : Y ⊆ ϕ(a)}

for every subbasic closed Y of X(L) and, let Ψ: Fi(L)→ CKL(X(L)) be defined by

Ψ(F ) :=
⋂
a∈F

ϕ(a) = {P ∈ X(L) : F ⊆ P}

for every filter F of L.
Lemma 6.3. For every Y ∈ CKL (X(L)) and every F ∈ Fi(L) we have that

(Ψ ◦ Φ) (Y ) = Y and (Φ ◦Ψ) (F ) = F.

Proof. The first equality is clear from the definition of subbasic closed subsets. For
the second one, let F ∈ Fi(L). We need to check that F = FΨ(F ). So, let a ∈ F
and P ∈ Ψ(F ) =

⋂
x∈F ϕ(x). Then, P ∈ ϕ(a). This implies that Ψ(F ) ⊆ ϕ(a)

and hence a ∈ FΨ(F ). Reciprocally, let a ∈ FΨ(F ). So, Ψ(F ) ⊆ ϕ(a). We suppose
that a /∈ F . Then, there exists P ∈ Opt(L) such that F ⊆ P and a /∈ P . Thus,
P ∈ Ψ(F ). Hence, a ∈ P . This is a contradiction. Then, a ∈ F . This completes
the proof. �

From the definitions of the maps Φ and Ψ and by the previous lemma, we have
the following result.
Theorem 6.4. The maps Φ and Ψ are mutually inverse dual lattice isomorphisms.

We denote by Cirr(X) the collection of all irreducible closed subsets of a topo-
logical space 〈X, T 〉.
Lemma 6.5. If 〈X, T ,K〉 is an md-space, then Cirr(X) ⊆ CK(X).
Proof. By Theorem 5.12, we can assume that 〈X, T ,K〉 is the dual md-space of an
md-semilattice L and thus, X = X(L) and K = KL = {ϕ(a)c : a ∈ L}.

Let A ∈ Cirr(X). Let us show that A = Ψ(FA), where FA = {a ∈ L :
A ⊆ ϕ(a)} ∈ Fi(L). Let P ∈ A and a ∈ FA. Thus, A ⊆ ϕ(a) and then
P ∈ ϕ(a). Hence, P ∈ Ψ(FA). Now, assume that P ∈ Ψ(FA). So, P ∈ ϕ(a)
for all a ∈ FA. Since A is a closed subset and KL is a subbase, it follows that
A =

⋂
i∈I (ϕ(ai1) ∪ · · · ∪ ϕ(aini)). Because A is irreducible, we obtain that for ev-

ery i ∈ I, A ⊆ ϕ(aiji) for some ji ∈ {1, . . . , ni}. So, aiji ∈ FA for all i ∈ I. Then,
P ∈ ϕ(aiji) for all i ∈ I. Hence, we obtain that P ∈

⋂
i∈I (ϕ(ai1) ∪ · · · ∪ ϕ(aini)) =

A. Therefore, A = Ψ(FA) ∈ CK(X). �
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We have seen that the lattice of filters of an md-semilattice L is in 1-1 corre-
spondence with the lattice of the subbasic closed subsets of its dual md-space X(L).
Now we want to determine the class of subbasic closed subsets that correspond to
the optimal filters. To this end, we introduce a variant of irreducibility for closed
subsets.

Definition 6.6. Let 〈X, T ,K〉 be a topological space. We say that a nonempty
closed set A of X is weakly-irreducible when for all U,U1, . . . , Un ∈ K,

A ⊆ U c ⊆ U c1 ∪ · · · ∪ U cn implies A ⊆ U ci for some i ∈ {1, . . . , n}.

For an md-space 〈X, T ,K〉, let us denote by Cwirr
K (X) the collection of all subbasic

closed subsets that are weakly-irreducible.

Lemma 6.7. Let 〈X, T ,K〉 be a topological space and let A be a closed subset of X.
If A is irreducible, then A is weakly-irreducible.

Corollary 6.8. Let 〈X, T ,K〉 be an md-space. Then Cirr(X) ⊆ Cwirr
K (X).

Proof. It is an immediate consequence from the previous lemma and by Lemma 6.5.
�

Proposition 6.9. Let L be an md-semilattice and 〈X(L), TL,KL〉 its dual md-
space. Then, the dual isomorphisms Φ and Ψ restricted to the ordered sets
〈Cwirr
KL (X(L)),⊆〉 and 〈X(L),⊆〉, respectively, are dual order-isomorphisms.

Proof. Notice that we only need to prove that Φ and Ψ are well defined functions
on Cwirr

KL (X(L)) and X(L), respectively. Let Y be a weakly-irreducible subbasic
closed subset of 〈X(L), TKL〉. We need to show that the filter Φ(Y ) = FY ∈
X(L) = Opt(L) ∪ {L}. Let a, a1, . . . , an ∈ L be such that a1, . . . , an /∈ FY and
[a1) ∩ · · · ∩ [an) ⊆ [a). So, by Remark 4.3 and Proposition 4.4, we have ϕ(a) ⊆
ϕ(a1) ∪ · · · ∪ ϕ(an). We suppose towards a contradiction that a ∈ FY . Thus
Y ⊆ ϕ(a). That is, Y ⊆ ϕ(a) ⊆ ϕ(a1)∪ · · · ∪ ϕ(an). Since Y is weakly-irreducible,
it follows that Y ⊆ ϕ(ai) for some i ∈ {1, . . . , n}. Then, ai ∈ FY and this is
a contradiction. Hence a /∈ FY . Therefore, FY ∈ Opt(L) or FY = L, that is,
FY ∈ X(L).

Now, let P ∈ X(L). We show that the subbasic closed subset Ψ(P ) is weakly-
irreducible. If P = L, then Ψ(L) = {L} and it is clearly weakly-irreducible.
Assume that P ∈ Opt(L). Let a, a1, . . . , an ∈ L be such that

Ψ(P ) ⊆ ϕ(a) ⊆ ϕ(a1) ∪ · · · ∪ ϕ(an).

Since ϕ(a) ⊆ ϕ(a1) ∪ · · · ∪ ϕ(an), it follows that [a1) ∩ · · · ∩ [an) ⊆ [a); moreover
notice that P ∈ Ψ(P ). So, a ∈ P . Because P is optimal, there exists i = 1, . . . , n
such that ai ∈ P . Then Ψ(P ) ⊆ ϕ(ai). Therefore, Ψ(P ) is a weakly-irreducible. �

It is clear that the partially ordered sets Cwirr
KL (X(L))\{{L}} and Opt(L) are dual

order-isomorphic. We summarize in Table 1 the correspondence between filters of
an md-semilattice L and the closed subsets of its dual md-space 〈X, T ,K〉.
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md-semilattices md-spaces

Fi(L) ←→ CK(X) subbasic closed subsets

∪ ∪

X(L) ←→ Cwirr
K (X) weakly-irreducible subbasic closed

∪ ∪

Opt(L) ←→ Cwirr
K (X) \ {{L}}

Table 1. Correspondence between filters and closed subsets.

Definition 6.10. A topological space 〈X, T ,K〉 with a subbase K is called s-sober
if for every weakly-irreducible subbasic closed A of X, there exists a unique x ∈ X
such that cl(x) = A.
Proposition 6.11. Let 〈X, T ,K〉 be an md-space. Then, it is s-sober.
Proof. Let Y be a weakly-irreducible subbasic closed subset of X. Then, by Propo-
sition 6.9, we have FY := {A ∈ DK(X) : Y ⊆ A} ∈ X(DK(X)). Then, by Theo-
rem 5.5, there exists x ∈ X such that FY = HX(x). Recall that HX(x) = {A ∈
DK(X) : x ∈ A}. Now we want to prove that Y = cl(x). By Proposition 6.9 again,
we have Y =

⋂
FY =

⋂
HX(x). Thus x ∈

⋂
HX(x) = Y . Since Y is a closed

subset, it follows that cl(x) ⊆ Y . Now, let a ∈ Y and let B ∈ DK(X) be such that
x ∈ B. Then, B ∈ HX(x) = FY ; this implies that Y ⊆ B. Thus, a ∈ B. Since K
is a subbase of X, it follows that a ∈ cl(x). Hence, Y ⊆ cl(x). Therefore, we have
proved that Y = cl(x). Moreover, this x is unique because the md-spaces are T0.
This completes the proof. �

Proposition 6.12. Let 〈X, T ,K〉 be a topological space with a subbase K that
satisfies conditions (1)–(4) of Definition 5.1. If 〈X, T ,K〉 is s-sober, then 〈X, T ,K〉
is an md-space.
Proof. We only need to show that condition (5) of Definition 5.1 holds. To this
end, we use the characterization given in Theorem 5.5. Let F ∈ X(DK(X)). Then,
by Proposition 6.9, we have that the set A :=

⋂
F is a weakly-irreducible subbasic

closed subset of X. By hypothesis, there exists x ∈ X such that cl(x) = A. Now, we
want to prove that HX(x) = F . Let B ∈ HX(x). So, cl(x) ⊆ B and then A ⊆ B.
Thus Bc ⊆ Ac =

⋃
{Cc : C ∈ F}. Since Bc ∈ K is compact, we have that there

are C1, . . . , Cn ∈ F such that Bc ⊆ Cc1 ∪ · · · ∪Ccn. It follows that C1 ∩ · · · ∩Cn ⊆ B
and since F is a filter, we obtain that B ∈ F . Reciprocally, let B ∈ F . So, A ⊆ B
and then cl(x) ⊆ B. Thus, x ∈ B and hence B ∈ HX(x). We have proved that
F = HX(x) and hence HX is onto. Therefore, 〈X, T ,K〉 is an md-space. �

Hence, we have characterized the md-spaces as follows:
Corollary 6.13. A topological space 〈X, T ,K〉 with a subbase K is an md-space if
and only if it satisfies conditions (1)–(4) of Definition 5.1 and is s-sober.
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7. Topological representation of congruences

The purpose of this section is to represent topologically some congruences on
md-semilattices. Certain congruence relations on md-semilattices were studied and
described by Hickman in [12]. Here we focus on a subclass of those congruences
considered by Hickman.

Definition 7.1 ([12]). Let 〈L,∧〉 be a semilattice. A semilattice congruence θ on
L is said to be join partial if aiθbi for i = 1, . . . , n and both a1 ∨ · · · ∨ an and
b1 ∨ · · · ∨ bn exist in L then (a1 ∨ · · · ∨ an)θ(b1 ∨ · · · ∨ bn).

For a map f : A → B, we denote the kernel of f by Ker(f) := {(a1, a2) ∈ A2 :
f(a1) = f(a2)}. Recall that all md-semilattices have a top element.

Proposition 7.2 ([12, Proposition 4.4]). Let L be an md-semilattice and θ a join
partial congruence on L. Then the canonical projection πθ : L → L/θ defined by
πθ(a) = a, the congruence class of a under θ, is a strong homomorphism preserving
top and Ker(πθ) = θ.

Let us consider the following join partial congruences on md-semilattices that
seem to be more natural as the next proposition shows.

Definition 7.3. Let L be an md-semilattice. A join partial congruence θ on L is
called an md-congruence if the quotient semilattice L/θ is mildly distributive.

In Figure 2, we depict an md-semilattice L and a join partial congruence θ. We
can easily observe that the quotient semilattice L/θ under θ is a non-distributive
lattice; in particular, L/θ is not mildly distributive and hence θ is not an md-
congruence.

Proposition 7.4. Let L and M be md-semilattices and let h : L→M be an onto
strong homomorphism. Then, Ker(h) is an md-congruence on L and L/Ker(h) ∼=
M .

Proof. It is straightforward to show directly that Ker(h) is a join partial congruence
on L (see [12, p. 297]). Let us now prove that the quotient semilattice L/Ker(h) is
mildly distributive. Let a1, . . . , an, a ∈ L be such that [a1)∩ · · · ∩ [an) ⊆ [a), where
x denotes the congruence class of x under Ker(h). We show that [h(a1)) ∩ · · · ∩
[h(an)) ⊆ [h(a)) in M . Let m ∈ M be such that h(ai) ≤ m for all i = 1, . . . , n.
Since h is onto, it follows that m = h(b) for some b ∈ L. Then h(ai) = h(ai ∧ b)
for all i = 1, . . . , n. So ai = ai ∧ b for all i = 1, . . . , n. That is, ai ≤ b for
all i = 1, . . . , n and thus a ≤ b. Then h(a) ≤ h(b). Now, since M is mildly
distributive, it follows that h(a) = (h(a1) ∧ h(a)) ∨ · · · ∨ (h(an) ∧ h(a)). This
implies that a = (a1 ∧ a) ∨ · · · ∨ (an ∧ a). Hence L/Ker(h) is mildly distributive
and therefore Ker(h) is an md-congruence.

If we define ψ : L/Ker(h)→M as ψ(a) = h(a), then a standard argument shows
that ψ is an isomorphism of semilattices. �

Now we are going to characterize topologically the class of md-congruences on
an md-semilattice.
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......

......
...
...

L L/θ

Figure 2. A partial join congruence on an md-semilattice that is
not an md-congruence

Let L be an md-semilattice and 〈X(L), TL,KL〉 its dual md-space. Recall that
X(L) = Opt(L) ∪ {L} and KL = {ϕ(a)c : a ∈ L}. Let θ be an md-congruence on
L. Since L/θ is an md-semilattice, we can consider its dual md-space

〈X(L/θ), TL/θ,KL/θ〉
where

X(L/θ) = Opt(L/θ) ∪ {L/θ} and KL/θ = {ϕ(a/θ)c : a/θ ∈ L/θ}.
We already know that the canonical projection πθ : L → L/θ is an onto strong

homomorphism preserving the top element. Then, by Proposition 5.13, we obtain
that π−1

θ : X(L/θ)→ X(L) is an injective strongly continuous map. Let
Xθ := π−1

θ [X(L/θ)] = {π−1
θ (Q) : Q ∈ X(L/θ)} ⊆ X(L)†.

Let 〈Xθ, Tθ〉 be the subspace of 〈X(L), TL〉, that is, Tθ = {U ∩Xθ : U ∈ TL} is the
induced topology by Xθ. Let Kθ := {ϕ(a)c ∩ Xθ : ϕ(a)c ∈ KL} = {ϕ(a)c ∩ Xθ :
a ∈ L}. Since KL is a subbase for the space X(L), it follows that Kθ is a subbase
for the subspace 〈Xθ, Tθ〉. We want to show that 〈Xθ, Tθ,Kθ〉 is an md-space. We
need the following result that is easy to check, and thus we leave the details to the
reader.

Lemma 7.5. Let 〈X, T ,K〉 be an md-space and let 〈Y, T ′,K′〉 be an arbitrary
topological space with a subbase K′. If there is a strong homeomorphism f : X → Y ,
then 〈Y, T ′,K′〉 is an md-space.
†We refer the reader to Section 2 for the set theoretical conventions.
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Proposition 7.6. The map π−1
θ : X(L/θ) → Xθ is a strong homeomorphism

from the md-space 〈X(L/θ), TL/θ,KL/θ〉 onto the topological structure 〈Xθ, Tθ,Kθ〉.
Therefore, 〈Xθ, Tθ,Kθ〉 is an md-space.
Proof. It is clear that π−1

θ : X(L/θ) → Xθ is a bijective strongly continuous map.
Let us now to prove that Kθ = {π−1

θ [ϕ(a/θ)c] : a ∈ L}.
Let a ∈ L and π−1

θ (Q) ∈ Xθ. Then

π−1
θ (Q) ∈ π−1

θ [ϕ(a/θ)c] ⇐⇒ (∃Q′ ∈ ϕ(a/θ)c)(π−1
θ (Q′) = π−1

θ (Q))
⇐⇒ Q ∈ ϕ(a/θ)c ⇐⇒ π−1

θ (Q) ∈ ϕ(a)c ∩Xθ.

Thus π−1
θ [ϕ(a/θ)c] = ϕ(a)c ∩Xθ. Hence, Kθ = {π−1

θ [ϕ(a/θ)c] : a ∈ L} = {π−1
θ [U ] :

U ∈ KL/θ}. Then π−1
θ : X(L/θ) → Xθ is a strong homeomorphism. Therefore, by

the previous lemma, 〈Xθ, Tθ,Kθ〉 is an md-space. �

Definition 7.7. Let 〈X, T ,K〉 be an md-space and let 〈Y, T ′,K′〉 be a topolog-
ical space with a subbase K′. We shall say that 〈Y, T ′,K′〉 is an md-subspace of
〈X, T ,K〉 if 〈Y, T ′〉 is a topological subspace of 〈X, T 〉 and K′ = {U ∩ Y : U ∈ K}.

By the previous proposition, we obtain the following result.
Corollary 7.8. Let L be an md-semilattice and θ an md-congruence on L. Then
〈Xθ, Tθ,Kθ〉 is an md-subspace of 〈X(L), TL,KL〉.

Now let 〈Y, T ′,K′〉 be an md-subspace of an md-space 〈X, T ,K〉. Consider
the corresponding dual md-semilattices 〈DK(X),∩, X〉 and 〈DK′(Y ),∩, Y 〉. Since
K′ = {U ∩ Y : U ∈ K} and DK′(Y ) = {Y \ (U ∩ Y ) : U ∈ K}, it follows that
DK′(Y ) = {A ∩ Y : A ∈ DK(X)}. For notational convenience, let us denote the
elements of the md-semilattice DK(X) with lower case letters a, b, c, etc. Let us
define the binary relation θY on DK(X) as follows: For every a, b ∈ DK(X),

aθY b if and only if a ∩ Y = b ∩ Y.
It is obvious that θY is an equivalence relation on DK(X).
Proposition 7.9. The relation θY is an md-congruence on the md-semilattice
DK(X).
Proof. It is clear that θY is a congruence with respect to the meet ∩. Moreover,
since the supremum in DK(X), when it exists, is the union, it follows that θY is
in fact a join partial congruence. It should be noted that for every a, b ∈ DK(X),
a/θY ≤ b/θY ⇐⇒ a ∩ Y ⊆ b ∩ Y .

Now we prove that the quotient semilattice DK(X)/θY is mildly distributive.
For this, let a1, . . . , an, a ∈ DK(X) be such that [a1/θY ) ∩ · · · ∩ [an/θY ) ⊆ [a/θY ).
We need to prove that a/θY = (a1/θY ∧ a/θY ) ∨ · · · ∨ (an/θY ∧ a/θY ). First, we
show that [a1 ∩ Y ) ∩ · · · ∩ [an ∩ Y ) ⊆ [a ∩ Y ) in DK′(Y ). Let b ∩ Y ∈ DK′(Y ) be
such that ai∩Y ⊆ b∩Y for all i = 1, . . . , n. Thus ai/θY ≤ b/θY for all i = 1, . . . , n
and then a/θY ≤ b/θY . Hence, since DK′(Y ) is mildly distributive, it follows that

a ∩ Y = [(a1 ∩ Y ) ∩ (a ∩ Y )] ∪ · · · ∪ [(an ∩ Y ) ∩ (a ∩ Y )]
= (a1 ∩ a ∩ Y ) ∪ · · · ∪ (an ∩ a ∩ Y ).

(7.1)
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It is clear that a/θY is an upper bound of ai/θY ∧ a/θY for i = 1, . . . , n. Let b ∈
DK(X) be such that ai/θY ∧a/θY ≤ b/θY for all i = 1, . . . , n. Then ai∩a∩Y ⊆ b∩Y
for all i = 1, . . . , n. From (7.1), it follows that a∩Y ⊆ b∩Y and thus a/θY ≤ b/θY .
So, we have proved that a/θY = (a1/θY ∧ a/θY ) ∨ · · · ∨ (an/θY ∧ a/θY ). Hence
DK(X)/θY is an md-semilattice and therefore θY is an md-congruence. �

Let L be an md-semilattice and 〈X, T ,K〉 its dual md-space. We have defined
the correspondences between md-congruences on L and md-subspaces of X by:

θ 7→ 〈Xθ, Tθ,Kθ〉 and 〈Y, T ′,K′〉 7→ θY .

Lastly, we want to show that these correspondences are mutually inverse in the
following sense: Let us prove that for every md-congruence θ on L,

aθb ⇐⇒ ϕL(a)θXθϕL(b) (7.2)
and for every md-subspace 〈Y, T ′,K′〉 of 〈X, T ,K〉,

Y and XθY are strong homeomorphic. (7.3)
Assume that aθb and let π−1

θ (Q) ∈ Xθ. Then

π−1
θ (Q) ∈ ϕL(a) ⇐⇒ a/θ ∈ Q ⇐⇒ b/θ ∈ Q ⇐⇒ π−1

θ (Q) ∈ ϕL(b).
Thus ϕL(a) ∩ Xθ = ϕL(b) ∩ Xθ and hence ϕL(a)θXθϕL(b). Now suppose that
a/θ 6= b/θ. We can assume that a/θ � b/θ. Since L/θ is an md-semilattice,
there exists Q ∈ X(L/θ) such that a/θ ∈ Q and b/θ /∈ Q. Thus a ∈ π−1

θ (Q) and
b /∈ π−1

θ (Q). Then ϕL(a) ∩Xθ * ϕL(b) ∩Xθ and hence ϕL(a)/θXθ 6= ϕL(b)/θXθ .
Therefore (7.2) holds.

In order to prove (7.3), we consider the map e : L→ DK′(Y ) defined by e(a) =
ϕL(a)∩Y . It is straightforward to show that e is an onto strong homomorphism and
Ker(e) = θY . Then, by Proposition 7.4, we have L/θY and DK′(Y ) are isomorphic.
Thus, by Theorem 5.12, we obtain that the md-spaces X(L/θY ) and Y are strong
homeomorphic. From Proposition 7.6, we have that the md-spaces X(L/θY ) and
XθY are strong homeomorphic. Therefore Y and XθY are strong homeomorphic
and thus (7.3) holds.

Therefore, we have proved that the md-congruences on an md-semilattice L are
topologically represented by the md-subspaces of the dual md-space X(L) of L.
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