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Abstract
The general aim of this article is to study the negation fragment of classical logic within the framework of contemporary
(Abstract) Algebraic Logic. More precisely, we shall find the three classes of algebras that are canonically associated with
a logic in Algebraic Logic, i.e. we find the classes Alg∗, Alg and the intrinsic variety of the negation fragment of classical
logic. In order to achieve this, firstly, we propose a Hilbert-style axiomatization for this fragment. Then, we characterize the
reduced matrix models and the full generalized matrix models of this logic. Also, we classify the negation fragment in the
Leibniz and Frege hierarchies.
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1 Introduction

It is clear that the negation fragment of classical propositional logic (from now on CPL) is a very
inexpressive logic from the syntactic point of view. One can only consider up to equivalence a
proposition p and its negation ¬p, and no other compound sentential can be built up. However,
this fragment has several algebra-based semantics (in the different senses of this term) that are not
so trivial. We intend to describe these algebra-based semantics of the negation fragment of CPL from
the point of view of algebraic logic.

In the framework of (abstract) algebraic logic, there are essentially three classes of algebras
associated with a propositional logic. These classes are obtained from different procedures, which
intend to be a kind of generalization or abstraction of the Tarski–Lindenbaum method applied
to classical (intuitionistic) propositional logic. The class Alg∗(S) is the class of algebras that is
canonically associated with a logic S according to the theory of logical matrices. More precisely,
Alg∗(S) is the class of the algebraic reducts of the reduced matrix models of S . The intrinsic
variety of a logic S (denoted by V(S)) is defined as the variety generated by a quotient algebra
on the formula algebra. And the class Alg(S) is determined from the reduced generalized matrix
models, i.e. Alg(S) is the class of algebraic reducts of the reduced g-models of S . We refer the
reader to [3, 5, 6] for the specific definitions. In general, for any logic S , we always have that
Alg∗(S) ⊆ Alg(S) ⊆ V(S). In many cases, the three classes coincide, and in many others cases
the inclusions are proper. From the point of view of algebraic logic, the class of algebras which is
more representative for a logic S or which can be considered as the algebraic counterpart of S is
the class Alg(S). We refer the reader to [3, 5, 6] for a deeper explanation of the aims and goals of
algebraic logic and the corresponding algebra-based semantics. We intend to obtain the classes Alg∗,
the intrinsic variety and the class Alg for the negation fragment of CPL.
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2 Algebraic Logic for the Negation Fragment of Classical Logic

The article is organized as follows. Section 2 is about the significance of the negation fragment of
CPL, and we try to justify why it is important to study algebraically this fragment. In Section 3, we
introduce the very basics to start with the work. Throughout the paper, we will introduce the needed
concepts and results of algebraic logic. We assume that the reader is familiar with the very basics
of algebraic logic, for instance, with the notions of propositional logic (or sentential logic), logical
filter, a theory of a logic, logical matrices, generalized matrices, etc. We shall provide all those
notions that might be less usual for the reader. We refer the reader to [3, 5] for further information
on algebraic logic. Section 4 presents a Hilbert-style system for the negation fragment of CPL and
shows a completeness theorem. In Section 5, we characterize the Leibniz-reduced matrix models and
we describe the class Alg∗ of the negation fragment. Section 6 is devoted to obtaining the intrinsic
variety of the negation fragment. In Section 7, we characterize the full g-models of the negation
fragment. In order to obtain this, we describe the logical filters generated by a set on an arbitrary
algebra and present several properties of these logical filters. Then, we find the class Alg of the
negation fragment. Finally, in Section 8, we classify the negation fragment in the Leibniz and Frege
hierarchies.

2 Significance

As noted in the introduction, the negation fragment of CPL is a very simple logic since its algebraic
language has only one unary connective. In this section, we want to justify and convince the reader
about the importance of having an algebraic description of this fragment. So, we ask ourselves, what
is the algebraic counterpart, under the Algebraic Logic ([3, 5, 6]) point of view, of the negation
fragment of CPL? This question was addressed in the literature for the others fragments of CPL,
see Table 1. It is also important to answer the above question for the negation fragment beyond its
simplicity.

In order to study propositional logics is often important to have an axiomatization, for instance, a
Hilbert-style or Gentzen-style axiomatization. By [12], it is known that the negation fragment of CPL
has a finite Hilbert-style axiomatization. But there it isn’t explicitly presented. However, it is known
from the folklore that the Hilbert-style rules x, ¬x � y, x � ¬¬x and ¬¬x � x are an axiomatization
of the negation fragment of CPL. As far as we know, there isn’t in the literature an argumentation of
this. Here we present one.

As mentioned in the introduction, for the negation fragment of CPL, we described the three classes
of algebras that are naturally associated with a propositional logic in Algebraic Logic. In spite of the
syntactical simplicity of the negation fragment of CPL, we show that these three classes of algebras
are different and they are not so simple. In particular, we characterize the class Alg for this fragment.
We notice that this class of algebras was recently obtained in [10] using the concept of Suszko-
reduced matrix. In this paper, we follow an alternative path to describe the class Alg. We use the
Tarski-reduced full g-models. On the one hand, a logical matrix is a pair 〈A, F〉 where A is an algebra
(over a corresponding algebraic language) and F ⊆ A. On the other hand, a generalized matrix (g-
matrix) is a pair 〈A, C〉 where A is an algebra and C is a closure system on A. Both structures serve to
establish algebra-based semantics for propositional logics (see Sections 5 and 7). These two algebra-
based semantics have their differences, and regarding the more general difference between them, we
want to quote Font and Jansana (quoted from [5]):

‘Since an abstract logic can be viewed as a “bundle” or family of matrices, one might think
that the new models are essentially equivalent to the old ones; but we believe, after an overall
appreciation of the work done in this area, that it is precisely the treatment of an abstract logic
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Algebraic Logic for the Negation Fragment of Classical Logic 3
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4 Algebraic Logic for the Negation Fragment of Classical Logic

as a single object what gives rise to a useful—and beautiful—mathematical theory, able to
explain the connections, not only at the logical level but at the metalogical level, between a
sentential logic and the particular class of models we associate with it, namely the class of its
full models.’

Moreover, to justify why characterize the Tarski congruence and the Tarski-reduced full g-models
rather than the Suszko congruence and the Suszko-reduced models, respectively, we quote Font et
al. (quoted from [6, p. 73]):

‘The Suszko congruences appear as particular cases of the Tarski congruence [ . . . ].’

In this article, we obtain a description of the full g-models for the negation fragment of CPL, showing
that they are not simple at all. In order to convince the reader why to characterize the full g-models of
the negation fragment, which seem to be more complex than the negation fragment itself, we quote
Font and Jansana in [5, p. 3]:

‘We associate with each sentential logic S a class of abstract logics called the full models of S
[ . . . ] with the conviction that (some of) the interesting metalogical properties of the sentential
logic are precisely those shared by its full models. [ . . . ] And we claim that the notion of full
model is a “right” notion of model of a sentential logic [ . . . ].’

Beyond the scope of this article, we want to mention that there is also a great interest in
studying negation from the philosophical, linguistics, artificial intelligence and logic programming
point of view. We refer the reader to [9] where there is a compendium of articles studying
negation from different perspectives addressed to the question: What is negation? For instance,
in [2] Dunn discusses several properties that a negation can have: ϕ � ψ only if ¬ψ � ¬ϕ

(contraposition); ϕ � −¬ψ (Galois double negation); ϕ � ¬¬ϕ (constructive double negation);
ϕ � ¬ψ only if ψ � ¬ϕ (constructive contraposition); ϕ � ψ and ϕ � ¬ψ only if ϕ �
χ (absurdity); ¬¬ϕ � ϕ (classical double negation); ¬ϕ � ψ only if ¬ψ � ϕ (classical
contraposition). These properties are considered in different contexts. In [2], Dunn studies several
connections between different treatments of the semantics of negation in non-classical logics: the
Kripke definition of negation for intuitionistic logic, the Goldblatt’s semantics for negation in
orthologic, the definition of De Morgan negation in relevant logic, the four-valued semantics of
De Morgan negation and the star semantics. Dunn provides a detailed correspondence-theoretic
classification of various notions of negation in terms of properties of a binary relation interpreted
as incompatibility.

3 The {¬}-fragment of classical propositional logic (CPL)

Throughout what follows, we establish the following simple conventions. Given a function f : X →
Y and A ∪ {x} ⊆ X , we denote fx instead of f (x) and fA = {fa : a ∈ A}.

Let L = {¬} be an algebraic language of type (1) and let Fm be the algebra of formulas over the
language L and generated by a countably infinite set Var. Unless otherwise stated, all the algebras
considered in the paper are defined over the algebraic language L. Let us denote by SN = 〈Fm, �N 〉
the {¬}-fragment of CPL, where �N is the corresponding consequence relation. Let 2¬ = 〈{0, 1}, ¬〉
be the {¬}-reduct of the two-element Boolean algebra 2B. Then, it is clear that for all Γ ∪{ϕ} ⊆ Fm,

Γ �N ϕ ⇐⇒ ∀h ∈ Hom(Fm, 2¬)(hΓ ⊆ {1} �⇒ hϕ = 1).
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Algebraic Logic for the Negation Fragment of Classical Logic 5

Let N be the set of all positive integers and N0 = N∪{0}. Let x ∈ Var. For each n ∈ N0, we define
recursively ¬nx as usual: {

¬0x = x

¬nx = ¬¬n−1x ∀n ≥ 1.

LEMMA 3.1
For every α ∈ Fm, there is x ∈ Var and n ∈ N0 such that α = ¬nx.

PROOF. It is straightforward because Fm is the absolutely free algebra of type {¬} over Var. �

4 Hilbert-style axiomatization for the {¬}-fragment of CPL

In [12, Theorem 1], it is claimed that every two-valued logic (a logic defined as usual by a two-
valued matrix M = 〈A, {1}〉, i.e. A = {0, 1} is a two-element algebra) has a finite Hilbert-style
axiomatization. Hence, it follows that SN has a finite Hilbert-style axiomatization. In [12, p. 322],
it is mentioned that a Hilbert-style axiomatization for SN is easily established, but it isn’t explicitly
presented. It is part of the folklore that the negation fragment of CPL is axiomatized by the following
rules: x, ¬x � y, x � ¬¬x and ¬¬x � x. We give a proof of it for the lack of proper reference.

DEFINITION 4.1
Let S¬ = 〈Fm, �¬〉 be the propositional logic defined, as usual, by the following Hilbert-style
system:

(R1) x, ¬x � y

(R2) x � ¬¬x

(R3) ¬¬x � x.

Then, our goal is to show that the logics SN and S¬ coincide. To this end, we need some auxiliary
results. Given a propositional logic S = 〈Fm, �〉, a subset of formulas Γ is said to be inconsistent if
Γ � α for all α ∈ Fm. Otherwise, Γ is said to be consistent.

PROPOSITION 4.2
Let Γ ⊆ Fm be consistent. If Γ �¬ α, then there is γ ∈ Γ such that γ �¬ α.

PROOF. Suppose that Γ �¬ α. We proceed by induction on the length of the proofs from Γ . That is,
we prove that for all n ∈ N, if α1, . . . , αn is a proof from Γ , then there is γ ∈ Γ such that γ �¬ αn.

If n = 1, then α1 is a proof from Γ . Then α1 ∈ Γ . Hence, there is γ := α1 ∈ Γ such that
γ �¬ α1. Now suppose that for each proof α1, . . . , αk from Γ of length k < n, there is γ ∈ Γ such
that γ �¬ αk . Let α1, . . . , αn be a proof from Γ . Then, αn ∈ Γ or there is i < n such that αn is
derivable from the rules (R2) or (R3) and αi (notice that αn cannot be derivable from the rule (R1)
because Γ is consistent). Thus, in any case, αi �¬ αn. By inductive hypothesis, there is γ ∈ Γ such
that γ �¬ αi. Then γ �¬ αn. �

PROPOSITION 4.3
Let α, β ∈ Fm. Then, α �¬ β if and only if there is x ∈ Var and n, k ∈ N0 such that α = ¬nx,
β = ¬kx and n ≡2 k.
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6 Algebraic Logic for the Negation Fragment of Classical Logic

PROOF. (⇒) Assume that α �¬ β. We proceed by induction on the length of the proofs from α. That
is, we prove that for all m ∈ N, if α1, . . . , αm is a proof from α, then there is x ∈ Var and n, k ∈ N0
such that α = ¬nx, αm = ¬kx and n ≡2 k. If m = 1, then α = α1. From Lemma 3.1, we have
α = ¬nx = α1 for some x ∈ Var and n ∈ N0. Now suppose that it holds for all i < m. Let α1, . . . , αm
be a proof from α. Then, αm = α or αm is derivable from αi with i < m by an application of (R2) or
(R3) (it cannot be derivable by (R1); otherwise, there are αi = β and αj = ¬β with i, j < m. Then by
inductive hypothesis there is a variable x and n, m, k ∈ N0 such that α = ¬nx, αi = β = ¬mx, αj =
¬β = ¬kx, n ≡2 m and n ≡2 k. Hence, m ≡2 k and m+1 = k, a contradiction). It is straightforward
when αm = α. Suppose that αm is derivable from αi with i < m by an application of (R2) or (R3).
By inductive hypothesis, there is x ∈ Var and n, k ∈ N0 such that α = ¬nx, αi = ¬kx and n ≡2 k.
On the one hand, if αm is derivable from (R2), then αm = ¬¬αi. Hence, αm = ¬¬αi = ¬k+2x and
n ≡2 k + 2. On the other hand, if αm is derivable from (R3), then αi = ¬¬αm. Since ¬¬αm = αi =
¬kx, we have that k ≥ 2. Then αm = ¬k−2x and k − 2 ≥ 0. Hence, α = ¬nx, αm = ¬k−2x and
n ≡2 k − 2.

(⇐) Suppose that there are x ∈ Var and n, k ∈ N0 such that α = ¬nx, β = ¬kx and n ≡2 k.
Suppose that n ≤ k. Thus 0 ≤ k − n = 2q, for some q ∈ N0. Then, we have α = ¬nx �¬ ¬n+2x �¬
· · · �¬ ¬n+2qx = ¬kx = β (this can be proved by induction). If n > k, then n − 2q = k. Hence,
α = ¬nx �¬ ¬n−2x �¬ · · · �¬ ¬n−2qx = β. �

REMARK 4.4
Notice that for all α, β ∈ Fm, α �¬ β if and only if β �¬ α. In other words, α �¬ β if and only if
α ��¬ β.

COROLLARY 4.5
Let Γ ∪ {α, β} ⊆ Fm.

(1) α �¬ β �⇒ ¬α �¬ β.
(2) α �¬ β ⇐⇒ ¬β �¬ ¬α.
(3) Γ , α �¬ β and Γ , ¬α �¬ β �⇒ Γ �¬ β.

PROOF. (1) Suppose α �¬ β. Thus, there are x ∈ Var and n, k ∈ N0 such that α = ¬nx, β = ¬kx
and n ≡2 k. Then ¬α = ¬n+1x and n + 1 
≡2 k. Hence ¬α �¬ β.

(2) (⇒) Suppose that α �¬ β. Then, there are x ∈ Var and n, k ∈ N0 such that α = ¬nx, β = ¬kx
and n ≡2 k. Thus ¬α = ¬n+1x, ¬β = ¬k+1x and n + 1 ≡2 k + 1. Hence ¬β �¬ ¬α. (⇐) It is
straightforward by the above and by rules (R2) and (R3).

(3) Assume that Γ , α �¬ β and Γ , ¬α �¬ β. Suppose that Γ �¬ β. Then, by Propo-
sition 4.2, it follows that α �¬ β and ¬α �¬ β. This is a contradiction by property (1).
Hence, Γ �¬ β. �

PROPOSITION 4.6
Let α ∈ Fm and let Δ be a maximal theory relative to α of the logic S¬ (i.e. Δ is a
maximal theory among all the consistent theories not containing α). Then, for all β ∈ Fm,
β ∈ Δ iff ¬β /∈ Δ.

PROOF. Let β ∈ Fm.
(⇒) Assume β ∈ Δ. Since Δ is consistent (α /∈ Δ), it follows by rule (R1) that ¬β /∈ Δ.
(⇐) Suppose that ¬β /∈ Δ. We suppose, towards a contradiction, that β /∈ Δ. Let Γβ and Γ¬β

be the theories generated by Δ ∪ {β} and Δ ∪ {¬β}, respectively. Since Δ ⊂ Γβ and Δ ⊂ Γ¬β , it
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Algebraic Logic for the Negation Fragment of Classical Logic 7

follows by the maximality of Δ that α ∈ Γβ ∩ Γ¬β . Then

Δ, β � α and Δ, ¬β � α.

Hence, by (3) of Corollary 4.5, we obtain that Δ � α, which is a contradiction. Therefore, β ∈ Δ.�
Now we are ready to show that the rules (R1)–(R3) are an axiomatization for SN .

THEOREM 4.7
The Hilbert calculus formed by the rules (R1), (R2) and (R3) is an axiomatization for the {¬}-
fragment of CPL.

PROOF. We need to show that �N = �¬. Recall that �N is defined by the matrix 〈2¬, {1}〉.
(�¬ ⊆ �N ) (Soundness) This is a routine argument.
(�N ⊆ �¬) Suppose that Γ �¬ α. By [3, Lem. 1.43], there is a theory Δ such that Γ ⊆ Δ,

α /∈ Δ, and Δ is maximal relative to α. We define v : Fm → 2¬ as follows: for all ϕ ∈ Fm,
vϕ = 1 ⇐⇒ ϕ ∈ Δ. By Proposition 4.6, we obtain that v is a homomorphism such that vΓ ⊆ {1}
and vα = 0. Hence, Γ �N α. �

5 Reduced models and the class Alg∗(SN )

In this section, we characterize the reduced matrix models of the logic SN and we describe the class
Alg∗(SN ). We recall some needed notions.

Recall that a logical matrix (matrix for short) is a pair 〈A, F〉 where A is an algebra and F ⊆ A. The
Leibniz congruence, denoted by ΩAF, of a matrix 〈A, F〉 can be defined as follows (see [3, Theo.
4.23]): for all a, b ∈ A,

(a, b) ∈ ΩAF ⇐⇒ for all δ(x, −→z ) ∈ Fm and all−→c ∈ −→
A ,

[δA(a, −→c ) ∈ F ⇐⇒ δA(b, −→c ) ∈ F].
(5.1)

A matrix 〈A, F〉 is said to be reduced when ΩAF = IdA. Recall that a matrix 〈A, F〉 is a model of a
logic S when for all Γ ∪ {α} ⊆ Fm,

Γ �S α �⇒ ∀h ∈ Hom(Fm, A)(hΓ ⊆ F �⇒ hα ∈ F). (5.2)

Then, the class Alg∗(S) is defined as follows;

Alg∗(S) = {A : there is someF ⊆ A such that 〈A, F〉 is a reduced model of S}.
Recall also that a subset F of an algebra A is called an S-filter of A if condition (5.2) is satisfied.
That is, a subset F ⊆ A is an S-filter of A if and only if the matrix 〈A, F〉 is a model of S .

By (5.1) and taking into account that every formula α ∈ Fm is of the form α = ¬nx for some
x ∈ Var and n ∈ N0, we obtain the following characterization of the Leibniz congruences.

PROPOSITION 5.1
For every algebra A and every F ⊆ A,

(a, b) ∈ ΩAF ⇐⇒ ∀n ∈ N0(¬na ∈ F ⇐⇒ ¬nb ∈ F)

for all a, b ∈ A.
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8 Algebraic Logic for the Negation Fragment of Classical Logic

PROPOSITION 5.2
Let A be an algebra and F ⊆ A. Then, F is an SN -filter if and only if the following conditions hold:

(1) a, ¬a ∈ F �⇒ F = A;
(2) a ∈ F ⇐⇒ ¬¬a ∈ F.

PROOF. It is straightforward by rules (R1)–(R3). �
We are ready to characterize the reduced models of SN .

THEOREM 5.3
Let 〈A, F〉 be a matrix. Then, 〈A, F〉 is a reduced model of SN if and only if the following conditions
hold:

(1) A |� x ≈ ¬¬x,
(2) F = {a0} for some a0 ∈ A such that a0 
= ¬a0, and
(3) 2 ≤ |A| ≤ 3.

PROOF. (⇒) Assume that 〈A, F〉 is a reduced model of SN . Thus, F is an SN -filter and ΩAF = IdA.
(1) Let a ∈ A. From Proposition 5.2, we obtain

∀n ∈ N0(¬na ∈ F ⇐⇒ ¬n(¬¬a) ∈ F).

Then, (a, ¬¬a) ∈ ΩAF. Hence a = ¬¬a.
(2) We are assumed that the algebra A is not trivial, i.e. |A| ≥ 2. Then, F 
= ∅ (otherwise ΩAF =
A × A 
= ΔA). Let a, b ∈ F. By (1), we have that a = ¬2ka and b = ¬2kb for all k ∈ N0. Thus,
¬2ka, ¬2kb ∈ F, for all k ∈ N0. On the other hand, since a, b ∈ F and F is proper (otherwise 〈A, F〉
is not reduced), it follows by Proposition 5.2 that ¬a, ¬b /∈ F. Then, ¬2k+1a, ¬2k+1b /∈ F, for all
k ∈ N0. Hence, we have that ∀n ∈ N0(¬na ∈ F ⇐⇒ ¬nb ∈ F). Thus, (a, b) ∈ ΩAF. Then, a = b.
Therefore, F = {a0} for some a0 ∈ A. Moreover, a0 
= ¬a0. Otherwise, a0 = ¬a0 ∈ F, and by
Proposition 5.2 we have F = A, which is a contradiction because A is not trivial.
(3) Since A is not trivial, we have |A| ≥ 2. By (2), we have that F = {a0} and a0 
= ¬a0. Let a, b ∈ A
be such that a, b /∈ {a0, ¬a0}. Then, a, b, ¬a, ¬b /∈ F = {a0}. Thus, it holds that a ∈ F ⇐⇒ b ∈ F
and ¬a ∈ F ⇐⇒ ¬b ∈ F. Now by (1), it follows that ∀n ∈ N0(¬na ∈ F ⇐⇒ ¬nb ∈ F). Then
(a, b) ∈ ΩAF. Hence, a = b. Therefore, |A| ≤ 3.

(⇐) Let 〈A, F〉 be a matrix such that satisfies (1)–(3). By (1) and (2), it follows that F = {a0} is an
SN -filter, i.e. 〈A, F〉 is a model of SN . Let us see that 〈A, F〉 is reduced. Let a, b ∈ A and assume that
(a, b) ∈ ΩAF. Thus, we have a ∈ F ⇐⇒ b ∈ F and ¬a ∈ F ⇐⇒ ¬b ∈ F. If a ∈ F or ¬a ∈ F,
then a = b. Similarly, if b ∈ F or ¬b ∈ F, then a = b. Now suppose that a, b, ¬a, ¬b /∈ F = {a0}.
Thus a, b /∈ {a0, ¬a0}. Since |A| ≤ 3, we obtain that a = b. Hence, ΩAF = ΔA. Therefore, 〈A, F〉 is
a reduced model of SN . �

Therefore, we have that all non-trivial reduced matrix models 〈A, F〉 are of the form, up to
isomorphism:

1. A1 = {a} and F = ∅;
2. A2 = {a, b} such that ¬a = b and ¬b = a, with F = {a}; or
3. A3 = {a, b, c} such that ¬a = b, ¬b = a and ¬c = c, with F = {a}.

COROLLARY 5.4
Alg∗(SN ) = I ({A1, A2, A3}).
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Algebraic Logic for the Negation Fragment of Classical Logic 9

6 The intrinsic variety of SN

If one insists on having a variety associated with a logic S , the intrinsic variety of S might be the
adequate choice. The significance of the intrinsic variety as an algebra-based semantics for a logic
is in general weak, because no general theory asserts that the algebraic counterpart of a logic should
be a variety. In order to define the intrinsic variety and for what follows in the article, we recall some
needed concepts.

Recall that a generalized matrix (g-matrix) is a pair 〈A, C〉 where A is an algebra and C is a closure
system on A. By the correspondence between closure systems and closure operators, we can also
consider a g-matrix as a pair 〈A, C〉 where C is a closure operator on A.

The Tarski congruence of a g-matrix 〈A, C〉, denoted by Ω̃AC, is defined as the largest congruence
θ on A satisfying the following

(a, b) ∈ θ �⇒ C(a) = C(b).

Given a logic S , let us denote by T h(S) the closure system of all theories of S . Consider the
Tarski congruence Ω̃FmT h(S) of the g-matrix 〈Fm, T h(S)〉. The intrinsic variety of S , denoted by
V(S), is defined as the variety generated by the quotient algebra Fm/Ω̃FmT h(S). That is, V(S) =
V(Fm/Ω̃FmT h(S)). Now, since the interderivability relation ��N is a congruence on Fm (i.e. the
logic SN is self-extensional [3]), we have that

V(SN ) |� α ≈ β ⇐⇒ Fm/Ω̃FmT h(S) |� α ≈ β ⇐⇒ (α, β) ∈ Ω̃FmT h(S) ⇐⇒ α ��N β.

THEOREM 6.1
V(SN ) = {A : A |� x ≈ ¬¬x}.

PROOF. Let V := {A : A |� x ≈ ¬¬x}. Notice that if α = ¬nx, then for all h ∈ Hom(Fm, A) with
A ∈ V , it follows that {

hα = h(¬nx) = hx if n is even

hα = h(¬nx) = ¬hx if n is odd.
(6.1)

Let α, β ∈ Fm. Let us prove that

V |� α ≈ β ⇐⇒ ∃x ∈ Var, ∃n, k ∈ N0 such that α = ¬nx, β = ¬kx and n ≡2 k.

Suppose that V |� α ≈ β. By Lemma 3.1, there are x, y ∈ Var and n, k ∈ N0 such that α = ¬nx
and β = ¬ky. If x 
= y, then taking A = {a, b} with ¬a = a and ¬b = b, we obtain that A ∈ V and
A 
|� α ≈ β. A contradiction. Hence, x = y. Thus, α = ¬nx and β = ¬kx. Suppose that n 
≡2 k.
Thus, n is even and k is odd (or vice versa). Taking A2 = {a, b} as in page 8 and hx = a, we obtain
by (6.1) that

hα = h(¬nx) = hx = a and hβ = h(¬kx) = ¬hx = ¬a = b.

Hence A 
|� α ≈ β, which is a contradiction. Then n ≡2 k.
Now assume that α = ¬nx, β = ¬kx and n ≡2 k, for some x ∈ Var and n, k ∈ N0. Let A ∈ V and

h ∈ Hom(Fm, A). We have that n and k are both even or odd. In any case, by (6.1), we obtain that
hα = hβ. Hence V |� α ≈ β.
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10 Algebraic Logic for the Negation Fragment of Classical Logic

Hence, for all α, β ∈ Fm, we have

V(SN ) |� α ≈ β ⇐⇒ α ��N β

⇐⇒ ∃x ∈ Var, ∃n, k ∈ N0 s.t. α = ¬nx, β = ¬kx and n ≡2 k

⇐⇒ V |� α ≈ β.

Therefore, V(SN ) = {A : A |� x ≈ ¬¬x}. �

7 Full g-models for SN and the class Alg(SN )

In this section, we obtain the class Alg(SN ), which is considered in the framework of algebraic logic
as the algebraic counterpart of SN . To this end, we need first to obtain a characterization of the full g-
models of SN . The class of full g-models of a logic S is a particular class of g-models of S that behave
particularly well, in the sense that some interesting metalogical properties of a propositional logic
are precisely those shared by its full g-models. Then, the class Alg(S) is obtained as the algebraic
reducts of the reduced full g-models of S . It is claimed (see [5, p. 3]) that the notion of full g-model
is the ‘right’ notion of model of a propositional logic and that the class Alg(S) is the ‘right’ class of
algebras to be canonically associated with a propositional logic. We refer the reader to [3, 5, 6] for a
more detailed argumentation about the full g-models of a logic S and the class Alg(S).

We notice that the class Alg(SN ) was already described in [10] but using the notion of Suszko-
reduced matrix models. As we mentioned before, we follow a different path to find the class
Alg(SN ).

We start presenting some needed notions. A g-matrix 〈A, C〉 is said to be a g-model of a logic S
when for all Γ ∪ {α} ⊆ Fm,

Γ �S α �⇒ for all h ∈ Hom(Fm, A), hα ∈ C(hΓ ).

Recall from the previous section the notion of Tarski congruence of a g-matrix. A g-matrix 〈A, C〉 is
said to be reduced if Ω̃AC = IdA. Then, the class Alg(S) is defined as follows:

Alg(S) = {A : there is a closure system C onA such that 〈A, C〉 is a reduced g-model of S}.

An h ∈ Hom(A1, A2) is called a strict homomorphism from the g-matrix 〈A1, C1〉 to the g-matrix
〈A2, C2〉 when

a ∈ C1(X ) ⇐⇒ ha ∈ C2(hX ) for all X ∪ {a} ⊆ A1.

Let A be an algebra. We denote by F iS(A) the closure system of all S-filters of the algebra A of
a logic S . Given a subset X ⊆ A, let us denote by FigA

S(X ) the S-filter of A generated by X , i.e.
FigA

S(X ) is the least S-filter of A containing X .
A g-matrix 〈A, C〉 is said to be a full g-model of a logic S if there is an algebra A1 and a surjective

strict homomorphism h : 〈A, C〉 → 〈A1,F iS(A1)〉. The above g-matrix 〈A1,F iS(A1)〉 can be chosen
in a particular, significant way:

PROPOSITION 7.1 ([3, Prop. 5.85]).
A g-matrix 〈A, C〉 is a full g-model of a logic S if and only if

{F/Ω̃AC : F ∈ C} = F iS
(

A/Ω̃AC
)

.
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Algebraic Logic for the Negation Fragment of Classical Logic 11

PROPOSITION 7.2 ([3, Corollary 5.88(3)]).
Given a logic S ,

Alg(S) = {A : there is a closure system C on A such that

〈A, C〉 is a reduced full g-model of S}.
In order to characterize the full g-models of SN , it will be useful to obtain a characterization of

the SN -filters generated. We start with some basic properties.

PROPOSITION 7.3
Let A be an algebra. Then:

(B1) FigA
SN

(∅) = ∅.

(B2) FigA
SN

(a, ¬a) = A, for all a ∈ A.

(B3) FigA
SN

(a) = FigA
SN

(¬¬a).

PROOF. (B1) is a consequence from the fact that the logic SN have no theorems, and (B2) and (B3)
are straightforward by rules (R1)–(R3). �

Now let us to obtain a characterization of FigA
SN

(X ). Let E = {n ∈ N0 : n is even} and O = {n ∈
N0 : n is odd}. The next is a key proposition.

PROPOSITION 7.4
Let A be an algebra. Let B ⊆ A be such that the following condition holds:

∀b, b′ ∈ B, ∀(s, t) ∈ E × O(¬sb 
= ¬tb′). (7.1)

Then,

FigA
SN

(B) = {a ∈ A : ∃b ∈ B, ∃s, t ∈ E (¬sa = ¬tb)} and FigA
SN

(B) 
= A.

PROOF. Let
F = {a ∈ A : ∃b ∈ B, ∃s, t ∈ E (¬sa = ¬tb)}.

We prove in several steps that FigA
SN

(B) = F.
• F 
= A. If B = ∅, then F = ∅ 
= A. Suppose that B 
= ∅, and let b ∈ B. We show that

¬b /∈ F. Suppose that ¬b ∈ F. Thus, there is b′ ∈ B and s, t ∈ E such that ¬s(¬b) = ¬tb′. Then
¬s+1b = ¬tb′ with (t, s + 1) ∈ E × O, which is a contradiction by (7.1). Hence ¬b /∈ F. Therefore,
F 
= A.

• We show that F is an SN -filter. We need to verify conditions (1) and (2) of Proposition 5.2. (1)
Since F 
= A, we need to show that for all a ∈ A, a /∈ F or ¬a /∈ F. Let a ∈ A. Suppose that
a, ¬a ∈ F. Thus, there are b, b′ ∈ B and s, t, s′, t′ ∈ E such that ¬sa = ¬tb and ¬s′(¬a) = ¬t′b′.
Then, ¬s+s′+1a = ¬t+s′+1b and ¬s+s′+1a = ¬s+t′b′. Hence, ¬t+s′+1b = ¬s+t′b′ with b, b′ ∈ B and
(s + t′, t + s′ + 1) ∈ E × O, which is a contradiction by (7.1). Thus, a /∈ F or ¬a /∈ F. (2) Let
a ∈ A. If a ∈ F, then there is b ∈ B and s, t ∈ E such that ¬sa = ¬tb. Hence, ¬s(¬¬a) = ¬t+2b.
By definition of F, we obtain that ¬¬a ∈ F. Conversely, suppose that ¬¬a ∈ F. Thus, there is
b ∈ B and s, t ∈ E such that ¬s(¬¬a) = ¬tb. Hence, ¬s+2a = ¬tb and s + 2, t ∈ E . Then a ∈ F.
Therefore, it follows by Proposition 5.2 that F is an SN -filter.

• B ⊆ F. It is obvious by definition of F.
• F is the least SN -filter of A containing B. Let G be an SN -filter of A such that B ⊆ G. Let a ∈ F.

Thus, there is b ∈ B and s, t ∈ E such that ¬sa = ¬tb. By Proposition 4.3, we have that x �N ¬tx.
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12 Algebraic Logic for the Negation Fragment of Classical Logic

Since b ∈ B ⊆ G and G is an SN -filter, it follows that ¬tb ∈ G. Thus, ¬sa ∈ G. Since ¬sx �N x, it
follows that a ∈ G. Hence, F ⊆ G. Therefore, we have proved that FigA

SN
(B) = F. �

PROPOSITION 7.5
Let A be an algebra and B ⊆ A. The following conditions are equivalent.

(1) There exist b, b′ ∈ B and (s, t) ∈ E × O such that ¬sb = ¬tb′.
(2) FigA

SN
(B) = A.

PROOF. (1) ⇒ (2) Let b, b′ ∈ B and (s, t) ∈ E × O such that ¬sb = ¬tb′. We have that b, b′ ∈
FigA

SN
(B). Since s is even, it follows that x �N ¬sx. Then, ¬sb ∈ FigA

SN
(B). Thus, ¬tb′ ∈ FigA

SN
(B).

Since t is odd, it follows by Proposition 4.3 that ¬tx �N ¬x. Then ¬b′ ∈ FigA
SN

(B). That is, b′, ¬b′ ∈
FigA

SN
(B). Hence FigA

SN
(B) = A.

(2) ⇒ (1) It follows by Proposition 7.4. �
From Propositions 7.4 and 7.5, we have that for every algebra A and every B ⊆ A,

FigA
SN

(B) = A or FigA
SN

(B) = {a ∈ A : ∃b ∈ B, ∃s, t ∈ E (¬sa = ¬tb)}.

PROPOSITION 7.6
Let A be an algebra and b ∈ A such that

∀(s, t) ∈ E × O (¬sb 
= ¬tb). (7.2)

Then,

(1) FigA
SN

(b) = {a ∈ A : ∃s, t ∈ E (¬sa = ¬tb)};
(B4) a ∈ FigA

SN
(b) �⇒ b ∈ FigA

SN
(a);

(B5) a ∈ FigA
SN

(b) �⇒ ¬b ∈ FigA
SN

(¬a).

PROOF. (1) is an immediate consequence of Proposition 7.4. (B4) and (B5) follow by (1) and from
Proposition 4.3. �

Let A be an algebra. Notice from Proposition 7.5 that an element b ∈ A satisfies condition (7.2) if
and only if FigA

SN
(b) 
= A. Moreover, if B ⊆ A satisfying condition (7.1), then every element b ∈ B

satisfies condition (7.2). Thus, the next proposition is a consequence of Proposition 7.4 and by (1)
of Proposition 7.6.

PROPOSITION 7.7
Let A be an algebra and B ⊆ A. Then,

(B6) if a ∈ FigA
SN

(B) and FigA
SN

(B) 
= A, then there is b ∈ B such that a ∈ FigA
SN

(b).

PROPOSITION 7.8
Let 〈A, C〉 be a g-matrix. Then

(a, b) ∈ Ω̃AC ⇐⇒ ∀n ∈ N0(C(¬na) = C(¬nb)).

PROOF. It follows from the fact that Ω̃AC = ⋂
F∈C ΩAF (see [3, Lem. 5.31]) and by

Proposition 5.1. �
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Algebraic Logic for the Negation Fragment of Classical Logic 13

PROPOSITION 7.9
Let 〈A, C〉 be a g-matrix such that for each a ∈ A, C(a) = C(¬¬a). Then, for all a, b ∈ A,

(a, b) ∈ Ω̃AC ⇐⇒ C(a) = C(b) andC(¬a) = C(¬b).

PROOF. The implication ⇒ follows by the previous proposition.
(⇐) Let a, b ∈ A be such that C(a) = C(b) and C(¬a) = C(¬b). We prove that ∀n ∈

N0(C(¬na) = C(¬nb)) by induction on n. It is clear that holds for n = 0 and n = 1. Let n ≥ 2 and
suppose that for all k < n, C(¬ka) = C(¬kb). Since n ≥ 2, it follows that

C(¬na) = C(¬n−2a)
I .H .= C(¬n−2b) = C(¬nb).

Hence, ∀n ∈ N0(C(¬na) = C(¬nb)). Therefore (a, b) ∈ Ω̃AC. �
Now we are ready to present a characterization for the full g-models of the negation fragment SN .

THEOREM 7.10
Let 〈A, C〉 be a g-matrix. Then, 〈A, C〉 is a full g-model of the logic SN if and only if it satisfies:

(F1) C(a, ¬a) = A, for all a ∈ A.
(F2) C(a) = C(¬¬a), for all a ∈ A.
(F3) For all a, b ∈ A, if a ∈ C(b) and C(b) 
= A, then b ∈ C(a).
(F4) For all a, b ∈ A, if a ∈ C(b) and C(b) 
= A, ¬b ∈ C(¬a).
(F5) For all B ∪ {a} ⊆ A, if a ∈ C(B) and C(B) 
= A, then there is b ∈ B such that a ∈ C(b).
(F6) For every B ⊆ A, if C(B) = A, then there are b, b′ ∈ B such that C(b) = C(¬b′).

PROOF. Let 〈A, C〉 be a g-matrix and let C be the closure system associated with C.
(⇒) Assume that 〈A, C〉 is a full g-model of the logic SN . Thus, there is an algebra A1 and

a surjective strict homomorphism h : 〈A, C〉 → 〈A1,F iSN (A1)〉. Conditions (F1) and (F2) follow
by Proposition 7.3 and from the fact that theses conditions are preserved by surjective strict
homomorphisms (see [3, Proposition 5.90]).
(F3) Let a ∈ C(b) and suppose that C(b) 
= A. Since h is a strict homomorphism, it follows that
ha ∈ FigA1

SN
(hb) and FigA1

SN
(hb) 
= A. Thus, by Proposition 7.6, we have that hb ∈ FigA1

SN
(ha). Then

b ∈ C(a).
(F4) It is similar to the proof of (F3).
(F5) Let a ∈ C(B) and suppose that C(B) 
= A. Then, we have that ha ∈ FigA1

SN
(hB) and FigA1

SN
(hB) 
=

A. By Proposition 7.7, there is b ∈ B such that ha ∈ FigA1
SN

(hb). Then a ∈ C(b) with b ∈ B.
(F6) Let B ⊆ A be such that C(B) = A. Since h is a surjective strict homomorphism, it follows that
FigA1

SN
(hB) = A1. By Proposition 7.5, there are b, b′ ∈ B and (s, t) ∈ E ×O such that ¬shb = ¬thb′.

Then, FigA1
SN

(h(¬sb)) = FigA1
SN

(h(¬tb′)). Thus, C(¬sb) = C(¬tb′). By (F2), it follows that C(b) =
C(¬sb) = C(¬tb′) = C(¬b′).

(⇐) Assume that 〈A, C〉 is a g-matrix satisfying conditions (F1)–(F6). Let 〈A∗, C∗〉 be the
reduction of 〈A, C〉. That is, A∗ = A/Ω̃AC and C∗ = {F/Ω̃AC : F ∈ C}. By Proposition 7.1, it
is enough to prove that C∗ = F iSN (A∗). Notice that the natural homomorphism π : A → A∗ is a
surjective strict homomorphism from the g-matrix 〈A, C〉 onto its reduction 〈A∗, C∗〉. For each a ∈ A,
let a = a/Ω̃AC.
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14 Algebraic Logic for the Negation Fragment of Classical Logic

(⊆) By (F1) and (F2), we have that the g-matrix 〈A, C〉 is a g-model of SN . Then, 〈A∗, C∗〉 is a
g-model of SN . Hence, C∗ ⊆ F iSN (A∗).

(⊇) In order to prove the inverse inclusion, let us show that C∗(B∗) ⊆ FigA∗
SN

(B∗), for all B ⊆ A

where B∗ = {b : b ∈ B}. Let B ⊆ A. If FigA∗
SN

(B∗) = A∗, then C∗(B∗) ⊆ FigA∗
SN

(B∗). Assume that

FigA∗
SN

(B∗) 
= A∗. Let us show that C∗(B∗) 
= A∗. Suppose by contradiction that C∗(B∗) = A∗. Thus,
C(B) = A. By (F6), there are a, a′ ∈ B such that C(a) = C(¬a′). Now we show that C(a) 
= A.
Suppose that C(a) = A. Thus, by (F6), we obtain that C(a) = C(¬a). By (F2), we have that
C(¬a) = C(¬(¬a)). Then, by Proposition 7.9, it follows that a = ¬a = ¬a. Since a ∈ B∗, we
have that a, ¬a ∈ FigA∗

SN
(B∗). Then, FigA∗

SN
(B∗) = A∗, which is a contradiction. Hence, C(¬a′) =

C(a) 
= A. It follows by (F4) and (F2) that C(¬a) = C(a′). Then a = ¬a′. Given that a, a′ ∈ B∗,
we obtain that FigA∗

SN
(B∗) = A∗. A contradiction. Hence, C∗(B∗) 
= A∗. And thus C(B) 
= A. Now,

let a ∈ C∗(B∗). So a ∈ C(B). By (F5), there is a0 ∈ B such that a ∈ C(a0). Since C(B) 
= A, it
follows that C(a0) 
= A. Thus, since a ∈ C(a0) 
= A, it follows by (F3) and (F4) that a0 ∈ C(a)

and ¬a0 ∈ C(¬a). Thus, C(a) = C(a0). Since C(a) = C(a0) 
= A and a0 ∈ C(a), we have by (F4)
that ¬a ∈ C(¬a0). Then, we obtain that C(a) = C(a0) and C(¬a) = C(¬a0). Thus, a = a0 ∈ B∗.
Hence, a ∈ FigA∗

SN
(B∗). Hence, C∗(B∗) ⊆ FigA∗

SN
(B∗).

We have proved that C∗ = F iSN (A∗). Therefore, 〈A, C〉 is a full g-model of SN . �

REMARK 7.11
Notice that for every full g-model 〈A, C〉, it follows that C(∅) = ∅. Indeed, condition (F6) implies
that C(∅) 
= A. Then condition (F5) implies that a /∈ C(∅) for all a ∈ A. Hence, C(∅) = ∅.

Notice that conditions C(∅) = ∅ and (F1)–(F5) coincide respectively with conditions (B1)–(B6)
when they are considered on the g-matrices 〈A,F iSN (A)〉. And condition (F6) coincides with the
implication (2)⇒(1) of Proposition 7.5.

Let 〈A, C〉 be a g-matrix. The Frege relation, denoted by ΛAC, of C on A is defined as follows:

(a, b) ∈ ΛAC ⇐⇒ C(a) = C(b)

for all a, b ∈ A. Notice that the Tarski congruence is the largest congruence below ΛAC.

PROPOSITION 7.12
Let 〈A, C〉 be a g-matrix satisfying conditions (F4) and (F6). Then, the Frege relation ΛAC is a
congruence on A.

PROOF. Let a, b ∈ A be such that (a, b) ∈ ΛAC. Thus C(a) = C(b). If C(a) = C(b) 
= A, then we
have a ∈ C(b) 
= A. Then, we obtain by (F4) that ¬b ∈ C(¬a). Analogously, ¬a ∈ C(¬b). Hence,
C(¬a) = C(¬b). On the other hand, if C(a) = C(b) = A, it follows by (F6) that C(a) = C(¬a) and
C(b) = C(¬b). Then C(¬a) = C(¬b). Hence (¬a, ¬b) ∈ ΛAC. �

The following proposition tells us that for an algebra A in the intrinsic variety of SN , the proper
generated SN -filters on A are quite simple.

PROPOSITION 7.13
Let A ∈ V(SN ). For all B ⊆ A, if FigA

SN
(B) 
= A, then FigA

SN
(B) = B.
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PROOF. Let A ∈ V(SN ). Suppose that FigA
SN

(B) 
= A and let a ∈ FigA
SN

(B). By Proposition 7.4, there
is b ∈ B and s, t ∈ E such that ¬na = ¬tb. Since A |� x ≈ ¬¬x, it follows that a = b ∈ B. Hence
FigA

SN
(B) = B. �

THEOREM 7.14

Alg(SN ) = {A : A |� x ≈ ¬¬x and A |� (x ≈ ¬x & y ≈ ¬y �⇒ x ≈ y)}.

PROOF. (⊆) Let A ∈ Alg(SN ). Thus, 〈A,F iSN (A)〉 is a reduced full g-model of SN . Then,
〈A,F iSN (A)〉 satisfies conditions (F1)–(F6). By the previous proposition, it follows that
ΛAF iSN (A) = Ω̃AF iSN (A) = IdA. Then, by (B3) (or (F2)), we obtain that a = ¬¬a, for all
a ∈ A. Hence, A |� x ≈ ¬¬x. Now let a, b ∈ A and assume that a = ¬a and b = ¬b. By
(B2), we have FigA

SN
(a) = A = FigA

SN
(b). Thus, (a, b) ∈ ΛAF iSN (A). Then a = b. Hence,

A |� (x ≈ ¬x & y ≈ ¬y �⇒ x ≈ y).
(⊇) Let A be an algebra such that A |� x ≈ ¬¬x and A |� (x ≈ ¬x & y ≈ ¬y �⇒ x ≈ y).

It is straightforward that the g-matrix 〈A,F iSN (A)〉 is a full g-model of SN . Let us show that the
Frege relation of 〈A,F iSN (A)〉 is the identity relation. Let (a, b) ∈ ΛAF iSN (A). Thus, FigA

SN
(a) =

FigA
SN

(b). If FigA
SN

(a) = FigA
SN

(b) 
= A, it follows by Proposition 7.13 that a = b. Assume that

FigA
SN

(a) = FigA
SN

(b) = A. From FigA
SN

(a) = A, it follows by Proposition 7.5 that there is (s, t) ∈
E × O such that ¬sa = ¬ta. Then, a = ¬a. Similarly, b = ¬b. Since A |� (x ≈ ¬x & y ≈ ¬y �⇒
x ≈ y), we obtain that a = b. Hence, ΛAF iSN (A) = IdA. Therefore, the full g-model 〈A,F iSN (A)〉
is reduced, and thus A ∈ Alg(SN ). �

8 Concluding remarks

Throughout this article, we have obtained the three classes of algebras that are canonically associated
with the logic SN in the context of algebraic logic:

Alg∗(SN ) = I(A1, A2, A3) V(S) = {A : A |� x ≈ ¬¬x}

Alg(SN ) = {A : A |� (x ≈ ¬¬x) & (x ≈ ¬x & y ≈ ¬y �⇒ x ≈ y)}.
With this, we can complete the table with all the fragments of CPL and their corresponding classes
of algebras canonically associated, see Table 1.

Notice that it is clear that the inclusions Alg∗(SN ) ⊂ Alg(SN ) ⊂ V(SN ) are proper. For instance,
the algebra A2 = {a, b}, with ¬a = a and ¬b = b, belongs to V(SN ) but not to Alg(SN ). The {¬}-
reduct of the four-element Boolean algebra belongs to Alg(SN ) but not to Alg∗(SN ). Also notice
that the class Alg(SN ) is a quasi-variety but not a variety.

From the results that we have obtained, we can classify the {¬}-fragment of CPL in the Leibniz
hierarchy and in the Frege hierarchy (the two hierarchies of algebraic logic, see [3, Chap. 6 and 7])
and respond to an open problem proposed in [3, p. 418]. The {¬}-fragment SN of CPL is outside
of the Leibniz hierarchy because it is neither protoalgebraic nor truth-equational: Notice that the
logic SN is non-trivial, and thus SN is not almost inconsistent. Since the unique protoalgebraic logic
without theorems is the almost inconsistent one, it follows that SN is not protoalgebraic. Moreover,
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16 Algebraic Logic for the Negation Fragment of Classical Logic

since the logic SN has no theorems, it follows that SN is not truth-equational. Now we turn out our
attention to the Frege hierarchy (see [3, p. 414]). Since being Fregean is a property that is preserved
by fragments and CPL is clearly Fregean, it follows that SN is Fregean. Moreover, the logic SN is
also fully self-extensional: Let A ∈ Alg(SN ). In the proof of Theorem 7.14, we have proved that the
Frege relation ΛAF iSN (A) is the identity relation. Hence, SN is fully self-extensional. However, we
will show that SN is not fully Fregean. In order to show this, consider the following relation: let S
be a logic, A an algebra and F ⊆ A,

ΛA
SF = {(a, b) ∈ A × A : FigA

S(F, a) = FigA
S(F, b)}.

PROPOSITION 8.1 ([3, Prop. 7.56]).
A logic S is fully Fregean if and only if ΛA

SF ⊆ ΩAF for every F ∈ F iS(A) and every algebra A.

Let A3 = {a, b, c} be the algebra given on page 8. Let F = {a}. We know that F ∈ F iSN (A3).

We have that FigA3
SN

(F, b) = A (because b, ¬b ∈ FigA3
SN

(F, b)) and FigA3
SN

(F, c) = A (because

c, ¬c ∈ FigA3
SN

(F, c)). Hence, (b, c) ∈ ΛA
SN

F. But (b, c) /∈ ΩAF because ¬b ∈ F and ¬c /∈ F (see

Proposition 5.1). Thus, ΛA
SN

F � ΩAF. Therefore, the {¬}-fragment of CPL is not fully Fregean.
This answers negatively the question: Is the class of fully Fregean logics the intersection of the
classes of the Fregean and the fully self-extensional ones? That is, SN is a Fregean and fully self-
extensional logic but is not fully Fregean one. It is worth mentioning that Tommaso Moraschini and
Ramon Jansana found this example before but they don’t publish it (c.p.).
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