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Abstract. An alternative notion of an existential quantifier on four-valued
�Lukasiewicz algebras is introduced. The class of four-valued �Lukasiewicz
algebras endowed with this existential quantifier determines a variety
which is denoted by M 2

3
L4. It is shown that the alternative existential

quantifier is interdefinable with the standard existential quantifier on a
four-valued �Lukasiewicz algebra. Some connections between the new ex-
istential quantifier and the existential quantifiers defined on bounded dis-
tributive lattices and Boolean algebras are given. Finally, a completeness
theorem for the monadic four-valued �Lukasiewicz predicate calculus cor-
responding to the dual of the alternative existential quantifier is proven.
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1. Introduction

In [9] Halmos introduced the monadic Boolean algebras as the algebraic coun-
terpart of the monadic predicate calculus. After this, several generalizations
of monadic algebras were obtained for some classes of algebras associated to
non-classic logics [1,2,7,8]. In particular, the monadic four-valued �Lukasiewicz
algebras were studied in [1,7,8] as a four-valued �Lukasiewicz algebra endowed
with an existential (universal) quantifier, here called standard existential (uni-
versal) quantifier. However, it is important to point out that although the
underlying propositional logic is non-classical, the corresponding quantifier is
interpreted in the context of classical logic.

In this paper, we present an alternative notion of an existential quantifier
on four-valued �Lukasiewicz algebras, whose interpretation is non-classical, and
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which turns out to be a generalization of the usual concept of an existential
quantifier on Boolean algebras. This notion of quantifier arises as a generaliza-
tion of the middle existential quantifiers on three-valued �Lukasiewicz algebras
introduced by Petrovich in [16]. In [17] a quantifier is associated to each el-
ement of the three-valued �Lukasiewicz chain 3 = {0, 1

2 , 1} in the following
sense. Let X be a nonempty set and let 3X be the three-valued �Lukasiewicz
algebra where the operations are defined pointwise. If ν ∈ {0, 1

2 , 1} then the ν-
existential quantifier ∃ν : 3X → 3X is characterized by the following property,
for each f ∈ 3X :

∃ν(f) is the constant function taking the value ν if and only if
f takes the value ν in some element x ∈ X.

(Pν)

Thus ∃1 and ∃0 are the standard existential and universal quantifiers, respec-
tively, defined on a three-valued �Lukasiewicz algebra [14] while ∃ 1

2
is the middle

quantifier considered in [17].
Now, let 4 = {0, 1

3 , 2
3 , 1} be the four-valued �Lukasiewicz chain and 4X be

the four-valued �Lukasiewicz algebra where the operations are defined point-
wise. So, in a similar way, we can define four quantifiers on 4X which satisfy
Property (Pν) for all f ∈ 4X and every ν ∈ {0, 1

3 , 2
3 , 1}. Again ∃1 and ∃0 are

the standard existential and universal quantifiers, respectively, defined on a
four-valued �Lukasiewicz algebra [1,2]. We can see that ∃ 1

3
is the dual operator

of ∃ 2
3

as well as ∃0 is the dual of ∃1, i.e., ∃ 1
3

= ¬∃ 2
3
¬ and ∃0 = ¬∃1¬. For this

reason we will investigate only the properties of the existential quantifier ∃ 2
3
.

The paper is organized as follows. In Sect. 2, we define an operator on
the functional four-valued �Lukasiewicz algebras 4X and, we study its main
properties. Then, we introduce the general and abstract definition of the 2/3-
existential quantifiers on four-valued �Lukasiewicz algebras and show several
properties from this definition. The main aim in Sect. 3 is to prove that the
four-valued �Lukasiewicz algebras endowed with a 2/3-existential quantifier are
polynomially equivalent to the four-valued �Lukasiewicz algebras endowed with
a standard existential quantifier (in the sense of [2]). In Sect. 4, we study some
connections between the 2/3-existential quantifiers on four-valued �Lukasiewicz
algebras and the Boolean existential quantifiers [9] defined on the Boolean ele-
ments and the lattice existential quantifiers [5] defined on certain distributive
sub-lattices of four-valued �Lukasiewicz algebras. In fact, we prove that from
a 2/3-existential quantifier it can be defined a Boolean existential quantifier
and a lattice existential quantifier and reciprocally, under certain restrictions,
from a Boolean existential quantifier and a lattice existential quantifier it is
possible to define a 2/3-existential quantifier. Finally, in Sect. 5, we propose a
monadic four-valued �Lukasiewicz predicate calculus, which correspond to the
2/3-universal quantifier. Then we prove a completeness theorem for this logic.
To attain this, we need to consider a monadic four-valued �Lukasiewicz pred-
icate calculus corresponding to the standard universal quantifier [2] and we
show a completeness theorem for it.
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The variety of four-valued �Lukasiewicz algebras is the algebraic coun-
terpart of �Lukasiewicz four-valued propositional calculus, but the variety of
n-valued �Lukasiewicz algebras for n ≥ 5 does not correspond to �Lukasiewicz
n-valued propositional logic. Four-valued �Lukasiewicz algebras are polynomi-
ally equivalent to four-valued MV -algebras and to four-valued Wajsberg al-
gebras [2,4,6,11]. In [7] it is proved that monadic n-valued MV-algebras are
polynomially equivalent to monadic n-valued �Lukasiewicz algebras for n = 3
and n = 4.

A four-valued �Lukasiewicz algebra, for short L4-algebra, (see for instance
[2] and [11]) is an algebra 〈L,∨,∧,¬, σ1, σ2, σ3, 0, 1〉 of type (2,2,1,1,1,1,0,0)
satisfying the following conditions, for all x, y ∈ L and any i, j ∈ {1, 2, 3}:

(L1) 〈L,∨,∧,¬, 0, 1〉 is a De Morgan algebra,
(L2) σi(x ∨ y) = σix ∨ σiy,
(L3) σi(x ∧ y) = σix ∧ σiy,
(L4) σix ∨ ¬σix = 1,
(L5) ¬σix = σ4−i¬x,
(L6) σiσjx = σjx,
(L7) σ1x ≤ σ2x ≤ σ3x,

(MDP) if σix = σiy for all i ∈ {1, 2, 3}, then x = y (Moisil’s Determination
Principle).

The following identity holds in every L4-algebra and will be used fre-
quently

x ∧ ¬x = (¬x ∧ σ2x) ∨ (x ∧ ¬σ2x). (L8)

For brief, we will denote an L4-algebra 〈L,∨,∧,¬, σ1, σ2, σ3, 0, 1〉 by its
support set L. We refer the reader to [2] and [11] for the basic properties of
four-valued �Lukasiewicz algebras. Let L be an L4-algebra. An element x ∈ L is
a Boolean element if σ1x = x; we denote by B(L) the set of Boolean elements
of L.

Let 〈4,∨,∧, σ1, σ2, σ3, 0, 1〉 be the L4-algebra of four elements where the
operations are defined as follows: x ∨ y = max(x, y), x ∧ y = min(x, y), ¬x =
1 − x and

σi

(
k

3

)
=

{
0 if i + k ≤ 3
1 if i + k > 3

for all i ∈ {1, 2, 3} and k ∈ {0, 1, 2, 3}.

Let X be a nonempty set. It is clear that 4X is also a four-valued
�Lukasiewicz algebra where the operations are defined pointwise. The constant
functions having the values 0, 1

3 , 2
3 and 1 will be denote by 0, 1

3 , 2
3 and 1,

respectively.
The standard existential and universal quantifiers on 4X are defined by

∃1f =
∨

x∈X f(x) and ∃0f =
∧

x∈X f(x), respectively, and it should be clear
that ∃0 and ∃1 hold Property (Pν). In what follows we will define an existential
quantifier associated to the element 2

3 ∈ 4.
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2. 2/3-Existential Quantifiers on L4-Algebras

Using the above considerations, we give an alternative notion of an existential
quantifier on a functional L4-algebra, and we show the main properties of
this operator. Then, we will introduce an abstract definition of 2/3-existential
quantifiers on four-valued �Lukasiewicz algebras.

Definition 2.1. Let X be a nonempty set. We define the unary operator ∃ 2
3

on
4X by

∃ 2
3
f =

( ∨
x∈X

f(x)

)
∧

∧
x∈X

(f(x) ∨ σ2¬f(x)) .

It is clear that ∃ 2
3
f is a constant function for all f ∈ 4X .

Notice that in the previous definition f(x) ∨ σ2¬f(x) = f(x) ∨ 2¬f(x),
for all f ∈ 4X and every x ∈ X, where 2a = a ⊕ a, being ⊕ the sum of
MV -algebras.

Proposition 2.2. The operator ∃ 2
3

defined above on 4X satisfies the property

∃ 2
3
f =

2
3

if and only if there is x0 ∈ X such that f(x0) =
2
3
. (P 2

3
)

Proof. First assume that there is x0 ∈ X such that f(x0) = 2
3 . Since f(x) ∨

σ2(¬f(x)) ≥ 2
3 for all x ∈ X we have
∨

x∈X

f(x) ≥ 2
3

and
∧

x∈X

(f(x) ∨ σ2 (¬f(x))) =
2
3
.

Then, ∃ 2
3
f = 2

3 . Conversely, assume that ∃ 2
3
f = 2

3 . Then we have two pos-
sibilities

∨
x∈X f(x) = 2

3 or
∧

x∈X (f(x) ∨ σ2 (¬f(x))) = 2
3 . In the first case,

there is x0 ∈ X such that f(x0) = 2
3 . Otherwise, there is x0 ∈ X such that

f(x0) ∨ σ2(¬f(x0)) = 2
3 . Since the image of σ2 is {0, 1}, we obtain f(x0) = 2

3 .
�

The following proposition tells us what the behaviour of ∃ 2
3

is; the proof
is not hard, and we leave the details to the reader.

Proposition 2.3. The operator ∃ 2
3

introduced in Definition 2.1 can be expressed
as follows:

∃ 2
3
f =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if f = 0,
1
3 if there is x0 ∈ X such that f(x0) = 1

3 and f ≤ 1
3 ,

2
3 if there is x0 ∈ X such that f(x0) = 2

3 ,

1 if there is x0 ∈ X such that f(x0) = 1 and

f(x) �= 2
3 for all x ∈ X.

The following proposition follows from Definition 2.1 and Proposition 2.3.

Proposition 2.4. The operator ∃ 2
3

satisfies, for all f, g ∈ 4X, the following pro-
perties:



An Alternative Definition of Quantifiers 5

(1) ∃ 2
3
0 = 0;

(2) σif ≤ ∃ 2
3
σif , for i ∈ {1, 2, 3},

(3) σi∃ 2
3
f = ∃ 2

3
σif , for i ∈ {2, 3},

(4) ∃ 2
3

(
f ∧ ∃ 2

3
g
)

= ∃ 2
3
f ∧ ∃ 2

3
g,

(5) ∃ 2
3
f ≤ f ∨ σ2¬f ,

(6) ∃ 2
3
(f ∨ ¬σ2f) ≤ ∃ 2

3
f ∨ ¬∃ 2

3
σ2f .

Now, taking into account the properties established in the previous propo-
sition, we introduce the following definition.

Definition 2.5. Let 〈L,∨,∧,¬, σ1, σ2, σ3, 0, 1〉 be an L4-algebra. An operator
∃ 2

3
: L → L is a 2/3-existential quantifier if satisfies the following conditions,

for all x, y ∈ L:
(A1) ∃ 2

3
0 = 0,

(A2) σix ≤ ∃ 2
3
σix, for i ∈ {1, 2, 3},

(A3) ∃ 2
3
σix = σi∃ 2

3
x, for i ∈ {2, 3},

(A4) ∃ 2
3
(x ∧ ∃ 2

3
y) = ∃ 2

3
x ∧ ∃ 2

3
y,

(A5) ∃ 2
3
x ≤ x ∨ σ2¬x,

(A6) ∃ 2
3

(x ∨ ¬σ2x) ≤ ∃ 2
3
x ∨ ¬∃ 2

3
σ2x.

The pair 〈L,∃ 2
3
〉 is a 2/3-monadic L4-algebra if L is an L4-algebra and

∃ 2
3

is a 2/3-existential quantifier on L. For short, hereinafter we will write ∃2

instead of ∃ 2
3
. We denote by M 2

3
L4 the class of all 2/3-monadic L4-algebras.

It is clear that if we consider the language 〈∨,∧,¬, σ1, σ2, σ3,∃2, 0, 1〉 of type
(2, 2, 1, 1, 1, 1, 1, 0, 0), then the class M 2

3
L4 is a variety.

Example 1. Let X be a nonempty set. Then 〈4X ,∃ 2
3
〉 is a 2/3-monadic L4-

algebra, where ∃ 2
3

is defined as in Definition 2.1.

Example 2. Let L be an L4-algebra and let c be an element of L satisfying the
identities σ2c = 0 and σ3c = 1.

(i) The operator ∃∗ : L → L given by the formula:

∃∗x =

⎧⎪⎪⎨
⎪⎪⎩

1 if x ∈ B(L) and x �= 0,
0 if x = 0,
c if x �= 0 and σ2x = 0,
¬c otherwise

satisfies axioms (A1) to (A5) but not (A6).
We leave to the reader the task of verifying that ∃∗ satisfies axioms (A1)

to (A5). Let L be an L4-algebra (for instance L = 4 × 4) and let x ∈ B(L) be
such that x �= 0 and x �= 1. Let z = x ∨ c. Note that σ2z = σ2x = x. Then
∃∗(z ∨ ¬σ2z) = ∃∗(x ∨ c ∨ ¬x) = ∃∗(1) = 1. On the other hand we claim that
∃∗z = ¬c. Indeed, it is clear that z �= 0, so ∃∗z �= 0. Since x �= 1 then z �∈ B(L)
because z ≥ c implies σ3z ≥ σ3c = 1, and if z ∈ B(L) then z = 1 = x ∨ c and
hence 1 = σ2x = x, a contradiction. So z �∈ B(L). Since x �= 0 it follows that
σ2z = σ2x = x �= 0. Therefore ∃∗z = ¬c. Finally, ∃∗σ2z = ∃∗x = 1 because x is
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a boolean element different from 0, so ¬∃∗σ2z = 0 and then ∃∗z∨¬∃∗σ2z = ¬c
and ∃∗(z ∨ ¬σ2z) = 1, so the inequality given in (A6) does not hold.

(ii) The operator ∃2 : L → L given by the prescription:

∃2(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 if x = 0
c if x �= 0 and σ2x = 0
¬c if σ2x �= σ1x
1 otherwise

is a 2
3 -existential quantifier.

Let L be an L4-algebra, S an L4-subalgebra of L and q : L → L a function.
We denote by q/S the restriction of q to S and by q(S) the image of S by q.
Next we give some basic properties of 2/3-monadic L4-algebras.

Proposition 2.6. Let 〈L,∃2〉 be a 2/3-monadic L4-algebra and let x, y ∈ L.
Then, the following properties hold:

(P1) ∃21 = 1,
(P2) ∃2∃2x = ∃2x,
(P3) x ≤ ∃2y implies ∃2x ≤ ∃2y,
(P4) ∃2x ≤ y implies ∃2x ≤ ∃2y,
(P5) x ∈ B(L) implies ∃2x ∈ B(L),
(P6) x ∈ ∃2(L) if and only if ∃2x = x,
(P7) 〈B(L),∃/B(L)〉 is a monadic Boolean algebra and ∃2(B(L)) = ∃2(L) ∩

B(L),
(P8) ∃2σ1∃2x = σ1∃2x,
(P9) σ1∃2x ≤ ∃2σ1x.

Proof. (P1) It is straightforward from (A2).
(P2) ∃2(1 ∧ ∃2x) = ∃21 ∧ ∃2x. So, ∃2∃2x = ∃2x.
(P3) It follows from (A4).
(P4) It follows by applying (A4) and (P2).
(P5) Let x ∈ B(L). So, σ2x = x and then, from (A3), we have σ2∃2x =

∃2σ2x = ∃2x. Thus ∃2x ∈ B(L).
(P6) It follows from (P2).
(P7) It is clear from (P5), (A1), (A2) and (A4).
(P8) Since ∃2 is an existential quantifier on B(L) and σ1∃2x ∈ B(L), it

follows that σ1∃2x ≤ ∃2σ1∃2x. Notice that σ1∃2x ≤ ∃2x. So, by (P3)
and (P2) we have ∃2σ1∃2x ≤ ∃2x. Then, by (P5), ∃2σ1∃2x ≤ σ1∃2x.
Therefore ∃2σ1∃2x = σ1∃2x.

(P9) By (A5) we have ∃2x ≤ x ∨ σ2¬x. So, σ1∃2x ≤ σ1x ∨ σ2¬x. Then
σ1∃2x ∧ σ2x ≤ (σ1x ∨ ¬σ2x) ∧ σ2x = σ1x. Since ∃2 is an existential
quantifier on B(L), it follows that ∃2 (σ1∃2x ∧ σ2x) ≤ ∃2σ1x. Now, from
(P8), (A4) and (A3) we have ∃2 (σ1∃2x ∧ σ2x) = σ1∃2x. Hence, σ1∃2x ≤
∃2σ1x.

Proposition 2.7. Let 〈L,∃2〉 be a 2/3-monadic L4-algebra. Then ∃2(L) is an
L4-subalgebra of L.
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Proof. By Definition 2.5 and Proposition 2.6, it is clear that ∃2(L) is closed
under ∧, σ1, σ2, and σ3, and includes 0 and 1. To prove that ∃2(L) is closed
under ¬ we will show that ∃2¬∃2x = ¬∃2x using condition (MDP). First,
notice that ¬σ3∃2x ∈ ∃2(L) follows from (A3) and (P7). Hence, ¬σ3∃2x =
∃2¬σ3∃2x. Now, by (P9) we have σ1∃2¬∃2x ≤ ∃2σ1¬∃2x = ∃2¬σ3∃2x =
∃2¬∃2σ3x = ¬∃2σ3x = ¬σ3∃2x = σ1¬∃2x. Since ∃2x ≤ σ3∃2x we obtain
¬σ3∃2x ≤ ¬∃2x and thus, by applying (P4), we have σ1¬∃2x = ¬σ3∃2x ≤
∃2¬∃2x. Then σ1¬∃2x ≤ σ1∃2¬∃2x. Hence, σ1¬∃2x = σ1∃2¬∃2x. Equalities
σi¬∃2x = σi∃2¬∃2x follow from (A3) and (P8), for i ∈ {2, 3}. Therefore, by
(MDP), it results ∃2¬∃2x = ¬∃2x.

Proposition 2.8. Let 〈L,∃2〉 be a 2/3-monadic L4-algebra. Then the following
properties hold:
(P10) ∃2x = 0 implies x = 0,
(P11) ¬∃2x ≤ ∃2¬x,
(P12) ∃2 (x ∨ ¬σ2x) ≤ x ∨ ¬σ2x,
(P13) ∃2 (¬x ∧ σ2x) = ¬∃2 (x ∨ ¬σ2x),
(P14) ∃2 (x ∨ ¬σ2x) = ∃2x ∨ ¬∃2σ2x,
(P15) ∃2 (¬x ∧ σ2x) = ¬∃2x ∧ ∃2σ2x,
(P16) σ1∃2x = ∃2σ1x ∧ ¬∃2 (¬σ1x ∧ σ2x),
(P17) ∃2 (¬x ∧ σ2x) ≤ ∃2 (¬x ∨ σ2x),
(P18) ∃2x = [∃2σ2x ∧ ∃2(x ∨ ¬σ2x)] ∨ ∃2(x ∧ ¬σ2x).

Proof. (P10) Suppose ∃2x=0. By (A2) we have x≤σ3x ≤ ∃2σ3x = σ3∃2x = 0.
(P11) We will use condition (MDP). By (A2), x ≤ σ3x ≤ ∃2σ3x. So, ¬∃2σ3x ≤

¬x. Since ¬∃2σ3x ∈ ∃2(L), by using (P4) and (A3), we have σ1¬∃2x =
¬∃2σ3x ≤ ∃2¬x. Hence σ1¬∃2x ≤ σ1∃2¬x. Now, for σ2, using (A3)
and (P7) we obtain σ2¬∃2x = ¬∃2σ2x ≤ ∃2¬σ2x = ∃2σ2¬x = σ2∃2¬x.
Finally, since ¬x ≤ σ3¬x ≤ ∃2σ3¬x, it follows that ¬∃2σ3¬x ≤ x.
Thus, by (P4) and (P7) it results ¬∃2σ3¬x ≤ ∃2x. So, by applying
σ1 to both sides of the inequality we obtain ¬∃2σ3¬x ≤ σ1∃2x. Then
¬σ1∃2x ≤ ∃2σ3¬x. Hence, σ3¬∃2x ≤ σ3∃2¬x. Therefore, by (MDP),
¬∃2x ≤ ∃2¬x.

(P12) It is clear from (A5), taking x ∨ ¬σ2x instead of x.
(P13) From (P12) it follows ¬x ∧ σ2x ≤ ¬∃2(x ∨ ¬σ2x). Then, by apply-

ing Proposition 2.7, (P3) and (P11) we have ∃2(¬x ∧ σ2x) ≤ ¬∃2(x ∨
¬σ2x) ≤ ∃2(¬x ∧ σ2x). Hence, ∃2 (¬x ∧ σ2x) = ¬∃2 (x ∨ ¬σ2x).

(P14) From (A6) we have ∃2(x ∨ ¬σ2x) ≤ ∃2x ∨ ¬∃2σ2x. To prove the other
inequality, first we use (A5) and (P4) to obtain ∃2x ≤ ∃2(x ∨ ¬σ2x).
On the other hand, by (A2), σ2x ≤ ∃2σ2x. Thus, ¬∃2σ2x ≤ ¬σ2x ≤
x ∨ ¬σ2x. Then, by Proposition 2.7 and (P4) we obtain ¬∃2σ2x ≤
∃2(x ∨ ¬σ2). Therefore ∃2x ∨ ¬∃2σ2x ≤ ∃2(x ∨ ¬σ2x).

(P15) It follows from properties (P13) and (P14).
(P16) Using (A3), (P15), (P9) and the fact that the restriction of ∃2 to

B(L) is an order preserving map, we have ∃2σ1x ∧ ¬∃2 (¬σ1x ∧ σ2x) =
∃2σ1x ∧ ¬∃2σ3(¬x ∧ σ2x) = ∃2σ1x ∧ σ1¬ (¬∃2x ∧ ∃2σ2x) = ∃2σ1x ∧
(σ1∃2x ∨ ¬∃2σ2x) = σ1∃2x.
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(P17) It follows easily using (MDP).
(P18) From (P14), (P15) and (P11) we have [∃2σ2x ∧ ∃2(x ∨ ¬σ2x)] ∨ ∃2(x ∧

¬σ2x) = [∃2σ2x ∧ (∃2x ∨ ¬∃2σ2x)]∨[¬∃2¬x ∧ ∃2σ2¬x] ≤ (∃2σ2x ∧ ∃2x)∨
(∃2x ∧ ∃2σ2¬x) ≤ ∃2x. So, now we need to prove the reverse inequal-
ity: ∃2x ≤ [∃2σ2x ∧ ∃2(x ∨ ¬σ2x)] ∨ ∃2(x ∧ ¬σ2x). Equivalently, by
applying the distributive law and (P17), we will show that ∃2x ≤
[∃2σ2x ∨ ∃2(x ∧ ¬σ2x)] ∧ ∃2(x ∨ ¬σ2x). For this, first we show that
∃2x ≤ ∃2σ2x ∨ ∃2(x ∧ ¬σ2x) using (MDP). Since σ1∃2x ≤ σ2∃2x ≤
σ2∃2x ∨ ∃2(x ∧ ¬σ2x) we have the following two inequalities σ1x ≤
σ1 (σ2∃2x ∨ ∃2(x ∧ ¬σ2x)) and σ2∃2x ≤ σ2 (σ2∃2x ∨ ∃2(x ∧ ¬σ2x)). On
the other hand, σ3(∃2σ2x ∨ ∃2(x ∧ ¬σ2x)) = ∃2σ2x ∨ ∃2(σ3x ∧ ¬σ2x) =
∃2(σ2x ∨ (σ3x ∧ ¬σ2x)) = ∃2σ3x = σ3∃2x. Hence, by (MDP), ∃2x ≤
∃2σ2x∨∃2(x∧¬σ2x). Moreover, by (A5) and (P4), ∃2x ≤ ∃2(x∨¬σ2x).
Therefore ∃2x ≤ [∃2σ2x ∨ ∃2(x ∧ ¬σ2x)] ∧ ∃2(x ∨ ¬σ2x). �

3. Connection Between the 2/3-Existential Quantifier and the
Existential Quantifier on L4-Algebras

In this section we establish the main connection between the class M 2
3
L4 and

the class of monadic four-valued �Lukasiewicz algebras (see [7,11]), denoted
by ML4. We will prove that these classes are polynomially equivalent [3]. A
monadic four-valued �Lukasiewicz algebra (or ML4-algebra , for short) is a pair
〈L,∃〉 where L is an L4-algebra and ∃ : L → L is a mapping, called existential
quantifier, which satisfies the following conditions:

(M1) ∃0 = 0,
(M2) x ≤ ∃x,
(M3) ∃(x ∧ ∃y) = ∃x ∧ ∃y,
(M4) ∃σix = σi∃x, for i ∈ {1, 2, 3}.

In this work, we refer to existential quantifiers as standard existential
quantifiers. Notice that these structures are abstractions of monadic functional
algebras 〈LX

4 ,∃〉, where X is a nonempty set and, for each f ∈ LX
4 ,∃f =∨

x∈X

f(x) = ∃1f . Under this setting, these monadic structures are natural gen-

eralizations of monadic Boolean algebras introduced and developed by Halmos
in [9]. The class of monadic four-valued �Lukasiewicz algebras is clearly equa-
tional; many properties of these algebras can be found in [1,2,7]. Recall that if
〈L,∃〉 is a monadic four-valued �Lukasiewicz algebra, then 〈B(L),∃/B(L)〉 is a
monadic Boolean algebra. Moreover, monadic L4-algebras are semisimple and
the simple monadic L4-algebras are the subalgebras of the monadic functional
L4-algebras 〈LX

4 ,∃〉.
For each four-valued �Lukasiewicz algebra L we denote by E(L) and E 2

3
(L)

the sets of existential quantifiers and 2/3-existential quantifiers defined on L,
respectively.

Theorem 3.1. Let L be a four-valued �Lukasiewicz algebra.
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(1) If ∃2 : L → L is a 2/3-existential quantifier, then the operator ∃∗
2 : L → L

defined by
∃∗
2x = ∃2σ1x ∨ ∃2(x ∧ ¬σ1x) (3.1)

for all x ∈ L, is an existential quantifier.
(2) If ∃ : L → L is an existential quantifier, then the operator ∃2 : L → L

defined by
∃2x = ∃x ∧ ¬∃(¬x ∧ σ2x) (3.2)

for all x ∈ L, is a 2/3- existential quantifier.
(3) The maps ψ : E 2

3
(L) → E(L) and ϕ : E(L) → E 2

3
(L) defined by ψ(∃2) =

∃∗
2 and ϕ(∃) = ∃2 are mutually inverse, i.e. ϕ◦ψ is the identity function

on E 2
3
(L) and ψ ◦ ϕ is the identity function on E(L).

Proof. Let L be a four-valued �Lukasiewicz algebra and let x, y ∈ L.
(1) Let ∃2 : L → L be a 2/3-existential quantifier. We check that ∃∗

2

satisfies conditions (M1)–(M4).
(M1) It is trivial because ∃20 = 0.
(M2) We show that x ≤ ∃∗

2x using (MDP). From (A2) it is clear that
σ1x ≤ ∃2σ1x ≤ ∃∗

2x. Then σ1x ≤ σ1∃∗
2x. Using (A3), (P7) and (A2) we have

σi∃∗
2x = ∃2σ1x∨∃2(σix∧¬σ1x) = ∃2 (σ1x ∨ (σix ∧ ¬σ1x)) = ∃2σix ≥ σix, for

i ∈ {2, 3}. Hence, by (MDP), x ≤ ∃∗
2x.

(M3) We must show that ∃∗
2 (x ∧ ∃∗

2y) = ∃∗
2x ∧ ∃∗

2y. From above, we
can assure that σi∃∗

2x = ∃2σix, for i ∈ {2, 3}. Using (P9) it is easy to see
that σ1∃∗

2x = ∃2σ1x holds. So, for i ∈ {1, 2, 3} we have σi∃∗
2 (x ∧ ∃∗

2y) =
∃2σi (x ∧ ∃∗

2y) = ∃2 (σix ∧ σi∃∗
2y) = ∃2 (σix ∧ ∃2σiy) = ∃2σix∧∃2σiy = σi∃∗

2x∧
σi∃∗

2y = σi (∃∗
2x ∧ ∃∗

2y). Hence, by (MDP), condition (M3) holds.
(M4) We already have shown that σi∃∗

2x = ∃2σix for i ∈ {1, 2, 3}. Since
∃∗
2σix = ∃2σix ∨ ∃2(σix ∧ ¬σix) = ∃2σix for i ∈ {1, 2, 3}, it follows that

σi∃∗
2x = ∃∗

2σix for all i ∈ {1, 2, 3}.
(2) Let ∃ : L → L be a standard existential quantifier. We need to check

that ∃2 satisfies conditions (A1)–(A6) of Definition 2.5.
(A1) ∃20 = ∃0 ∧ ¬∃(¬0 ∧ σ20) = 0.
(A2) Using (M2) we have ∃2σix = ∃σix ∧ ¬∃(¬σix ∧ σix) = ∃σix ≥ σix,

for i ∈ {1, 2, 3}.
(A3) Notice that in the above item we have proved that ∃2σix = ∃σix

for i ∈ {1, 2, 3}. So, using (M4) we have σi∃2x = σi∃x ∧ σi¬∃(¬x ∧ σ2x) =
∃σix ∧ ¬∃ (¬σix ∧ σ2x) = ∃σix ∧ ¬∃0 = ∃σix = ∃2σix, for i ∈ {2, 3}.

(A4) We prove that ∃2(x∧∃2y) = ∃2x∧∃2y using (MDP). Let i ∈ {1, 2, 3}.
Then

σi∃2(x ∧ ∃2y) = σi [∃(x ∧ ∃2y) ∧ ¬∃(¬(x ∧ ∃2y) ∧ σ2(x ∧ ∃2y))] .

By (M4) we have

σi∃2(x ∧ ∃2y) = ∃(σix ∧ σi∃2y) ∧
∧¬∃((¬σix ∧ σ2x ∧ σ2∃2y) ∨ (¬σi∃2y ∧ σ2x ∧ σ2∃2y)).

(3.3)
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Since ∃2σix = ∃σix for all i ∈ {1, 2, 3}, by (A3) it follows that σi∃2x =
∃2σix = ∃σix, for all i ∈ {2, 3}. Hence, from (3.3) and (M3) we obtain

σi∃2(x ∧ ∃2y) = ∃σix ∧ σi∃2y ∧ ¬∃(0 ∨ 0) = σi∃2x ∧ σi∃2y = σi(∃2x ∧ ∃2y),

for i ∈ {2, 3}. For i = 1, note that σ1∃2y = ∃σ1y ∧ ¬∃(¬σ1y ∧ σ2y), thus
σ1∃2y ∈ ∃(L). So, from (3.3), (M3) and the fact that ∃ preserves the join, we
can write σ1∃2(x ∧ ∃2y) as

∃σ1x ∧ σ1∃2y ∧ (¬∃(¬σ1x ∧ σ2x) ∨ ¬σ2∃2y) ∧ (σ1∃2y ∨ ¬∃σ2x ∨ ¬σ2∃2y).

Then, by applying the distributive law and taking into account that σ1∃2x =
∃σ1x ∧ ¬∃(¬σ1x ∧ σ2x) we obtain

σ1∃2(x ∧ ∃2y) = ((σ1∃2y ∧ σ1∃2x) ∨ 0) ∧ (σ1∃2y ∨ ¬∃σ2x ∨ ¬σ2∃2y)

= σ1∃2y ∧ σ1∃2x = σ1(∃2y ∧ ∃2x).

(A5) By (M2), ¬∃x ≤ ¬x and so ∃2x ≤ ¬∃(¬x ∧ σ2x) ≤ ¬(¬x ∧ σ2x) ≤
x ∨ σ2(¬x).

(A6) We will prove ∃2(x ∨ ¬σ2x) ≤ ∃2x ∨ ¬∃2σ2x. By definition of ∃2 we
obtain

∃2(x ∨ ¬σ2x) = ∃(x ∨ ¬σ2x) ∧ ¬∃ (¬(x ∨ ¬σ2x) ∧ σ2(x ∨ ¬σ2x))

= ∃(x ∨ ¬σ2x) ∧ ¬∃(¬x ∧ σ2x) = ¬∃(¬x ∧ σ2x)
(3.4)

and

∃2x ∨ ¬∃2σ2x = [∃x ∧ ¬∃(¬x ∧ σ2x)] ∨ ¬∃σ2x

= [∃x ∨ ¬∃σ2x] ∧ [¬∃(¬x ∧ σ2x) ∨ ¬∃σ2x]
= [∃x ∨ ¬∃σ2x] ∧ ¬∃(¬x ∧ σ2x). (3.5)

It is clear that ¬∃x∧∃σ2x = ∃(¬∃x∧σ2x) ≤ ∃(¬x∧σ2x), then ¬∃(¬x∧σ2x) ≤
∃x ∨ ¬∃σ2x which completes the proof.

(3) Let ∃2 : L → L be a 2/3-existential quantifier. Then, for each x ∈ L,

ϕψ(∃2)(x) = (∃∗
2)2 x = [∃2σ1x ∨ ∃2(x ∧ ¬σ1x)] ∧ ¬∃2(¬x ∧ σ2x). (3.6)

We will use condition (MDP). First, by applying in (3.6) the distributivity
property, we obtain

ϕψ(∃2)(x) = (∃2σ1x ∧ ¬∃2(¬x ∧ σ2x)) ∨ (∃2(x ∧ ¬σ1x) ∧ ¬∃2(¬x ∧ σ2x)) .

Then, by (P16) it follows that σ1ϕψ(∃2)(x) = (∃2σ1x ∧ ¬∃2(¬σ1x ∧ σ2x)) ∨
0 = σ1∃2x. From (3.6), (P9), (A3) and (P7) we have σiϕψ(∃2)(x) = ∃2σ1x ∨
∃2(σix ∧ ¬σ1x) = ∃2 (σ1x ∨ (σix ∧ ¬σ1x)) = ∃2σix = σi∃2x, for i ∈ {2, 3}.
Therefore, by (MDP), ϕψ(∃2) = ∃2.

Now, let ∃ : L → L be an existential quantifier. So, for each x ∈ L,

ψϕ(∃)(x) = ∃∗
2(x) = ∃2σ1x ∨ ∃2(x ∧ ¬σ1x).

Since ∃2σ1x = ∃σ1x and ∃2(x ∧ ¬σ1x) = ∃(x ∧ ¬σ1x) ∧ ¬∃(¬x ∧ σ2x), using
the distributive law and the fact that ∃ preserves the join, we obtain

ψϕ(∃)(x) = ∃x ∧ [∃σ1x ∨ ¬∃(¬x ∧ σ2x)] . (3.7)

Then, by applying (MDP) to expression (3.7), we have ψϕ(∃) = ∃. �
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4. Connection Between 2/3-Quantifiers, Lattice Quantifiers and
Boolean Quantifiers

Given a bounded distributive lattice A, an operator ∃ : A → A is an existential
quantifier (see Cignoli [5]) provided it satisfies conditions (M1), (M2), (M3)
and
(M5) ∃(x ∨ y) = ∃x ∨ ∃y.

Let 〈L,∃2〉 be a 2/3-monadic L4-algebra and let us consider the set

IL := {a ∈ L : σ2a = 0} = {a ∈ L : a ≤ ¬a} = {a ∧ ¬a : a ∈ L}.

It is clear that the set IL is a lattice ideal of L and therefore IL ∪ {1} is
a bounded distributive lattice. Moreover, IL is closed under the operator ∃2.
Notice that if a ∈ IL ∪ {1} and ∃2a = 1 then a = 1.

Proposition 4.1. Let 〈L,∃2〉 be a 2/3-monadic L4-algebra. Let ∃I be the re-
striction of ∃2 to IL ∪ {1}. Then ∃I is an existential quantifier of bounded
distributive lattices.

Proof. We need to prove that the operator ∃I satisfies conditions (M1)–(M3)
and (M5). Conditions (M1) and (M3) are straightforward. To show (M2), let
x ∈ IL ∪ {1}. If x = 1, then 1 = ∃1. Suppose that x ∈ IL. So, σ2x = 0
and then σ1x = 0. Thus, σix ≤ σi∃2x for i = 1, 2. Now, by (A2) and (A3)
we have σ3x ≤ ∃2σ3x = σ3∃2x = σ3∃Ix. Hence, by (MDP), x ≤ ∃Ix. For
(M5) it is easy to check that if x ≤ y then ∃Ix ≤ ∃Iy. So, it is clear that
∃Ix ∨ ∃Iy ≤ ∃I(x ∨ y). Now, for the reverse inequality we use again condition
(MDP). If either x = 1 or y = 1 then (M5) holds. Suppose x, y ∈ IL. So
x∨y ∈ IL and then ∃I(x∨y) ∈ IL. Thus, σ1∃I(x∨y) = σ2∃I(x∨y) = 0. Hence,
σi∃I(x ∨ y) ≤ σi (∃Ix ∨ ∃Iy) for i = 1, 2. Now, for σ3 we have σ3∃I(x ∨ y) =
σ3∃2(x∨y) = ∃2(σ3x∨σ3y) = ∃2σ3x∨∃2σ3y = σ3∃Ix∨σ3∃Iy = σ3 (∃Ix ∨ ∃Iy).
Therefore ∃I(x ∨ y) = ∃Ix ∨ ∃Iy. �

Thus, we can conclude that the 2/3-existential quantifier ∃2 induces
both a Boolean existential quantifier ∃2/B(L) on B(L) and a lattice exis-
tential quantifier ∃I on IL. Let 〈L,∃2〉 be a 2/3-monadic L4-algebra. Then
¬x∧σ2x, x∧¬σ2x ∈ IL, for all x ∈ L. Using (P13) we can rewrite the equality
(P18) as follows

∃2x = [∃2σ2x ∧ ¬∃2(¬x ∧ σ2x)] ∨ ∃2(x ∧ ¬σ2x)

=
[∃B(L)σ2x ∧ ¬∃I(¬x ∧ σ2x)

] ∨ ∃I(x ∧ ¬σ2x).

Hence, ∃2 can be expressed in terms of ∃B(L) and ∃I . Now, we want to prove
a reciprocal statement of the previous result. In other words, if L is an L4-
algebra, ∃B : B(L) → B(L) is a Boolean existential quantifier and ∃I : IL ∪
{1} → IL∪{1} is a lattice existential quantifier, can we define a 2/3-existential
quantifier from them? The following proposition answers to this question.

Proposition 4.2. Let L be an L4-algebra. Let ∃I : IL ∪ {1} → IL ∪ {1} be a
lattice existential quantifier and let ∃B : B(L) → B(L) be a Boolean existential
quantifier such that the following conditions hold:
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(1) σ3∃Ix = ∃Bσ3x, for all x ∈ IL,
(2) ∃Ix = 1 implies x = 1.

Then the operator ∃2 : L → L defined by

∃2x = [∃Bσ2x ∧ ¬∃I(¬x ∧ σ2x)] ∨ ∃I(x ∧ ¬σ2x)

is a 2/3-existential quantifier.

Proof. We need to prove that ∃2 satisfies conditions (A1)–(A6) in Definition
2.5. Let x, y ∈ L.

(A1) It is immediate by definition.
(A2) Let i ∈ {1, 2, 3}. So ∃2σix = [∃Bσix ∧ ¬∃I(¬σix ∧ σix)] ∨ ∃I(σix ∧

¬σix) = ∃Bσix ≥ σix. Notice that if a ∈ B(L), then ∃2a = ∃Ba.
(A3) We need to prove that σj∃2x = ∃2σjx for j = 2, 3. By definition of

∃2 we have σj∃2x2 = [∃Bσ2x ∧ σj¬∃I(¬x ∧ σ2x)]∨σj∃I(x∧¬σ2x) = [∃Bσ2x∧
¬σ4−j∃I(¬x ∧ σ2x)] ∨ σj∃I(x ∧ ¬σ2x). For j = 2 or 3, it follows that 4 − j = 2
or 1. Since ¬x∧σ2x ∈ IL, it follows by condition (2) that σ4−j∃I(¬x∧σ2) = 0.
So, we obtain σj∃2x = ∃Bσ2x ∨ σj∃I(x ∧ ¬σ2x). Now, if j = 2 then σ2∃2x =
∃Bσ2x ∨ σ2∃I(x ∧ ¬σ2x) = ∃Bσ2x = ∃2σ2x. On the other hand, for j = 3, it
follows from condition (1) that σ3∃2x = ∃Bσ2x ∨ σ3∃I(x ∧ ¬σ2x) = ∃Bσ2x ∨
∃B(σ3x ∧ ¬σ2x) = ∃B (σ2x ∨ (σ3x ∧ ¬σ2x)) = ∃Bσ3x = ∃2σ3x.

(A4) To prove ∃2 (x ∧ ∃2y) = ∃2x∧∃2y we use (MDP). On the one hand,
by (A3) and using that ∃2a = ∃Ba for all a ∈ B(L), we have

∃2(x ∧ ∃2y) =[∃B(σ2x ∧ ∃Bσ2y) ∧ ¬∃I((¬x ∨ ¬∃2y) ∧ (σ2x ∧ ∃Bσ2y))]∨
∨ ∃I(x ∧ ∃2y ∧ (¬σ2x ∨ ¬∃Bσ2y)).

On the other hand,

∃2x ∧ ∃2y = [[∃Bσ2x ∧ ¬∃I(¬x ∧ σ2x)] ∨ ∃I(x ∧ ¬σ2x)] ∧
∧ [[∃Bσ2y ∧ ¬∃I(¬y ∧ σ2y)] ∨ ∃I(y ∧ ¬σ2y)] .

Now, we apply the endomorphisms σ1, σ2 and σ3. First,

σ1∃2 (x ∧ ∃2y) =∃Bσ2x ∧ ∃Bσ2y ∧ ¬∃B [¬σ1x ∧ σ2x ∧ ∃Bσ2y]∧
∧ ¬∃B [¬σ1∃2y ∧ σ2x ∧ ∃Bσ2y].

Replacing ∃2y by its definition we have

σ1∃2 (x ∧ ∃2y) = ∃Bσ2x ∧ ∃Bσ2y ∧ ¬∃B(¬σ1x ∧ σ2x) ∧ ¬∃B(¬σ1y ∧ σ2y)

= σ1 (∃2x ∧ ∃2y) .

Now, let i ∈ {2, 3}. Then, σi (∃2x ∧ ∃2y) = ∃2σix ∧ ∃2σiy = ∃Bσix ∧ ∃Bσiy =
∃B (σix ∧ ∃Bσiy) = ∃B (σix ∧ σi∃2y) = ∃Bσi (x ∧ ∃2y) = σi∃2 (x ∧ ∃2y).

(A5) We prove ∃2x ≤ x ∨ ¬σ2x using (MDP). So, applying σ1 we obtain
σ1∃2x = ∃Bσ2x ∧ ¬∃B(¬σ1x ∧ σ2x) ≤ ¬∃B(¬σ1x ∧ σ2x) ≤ ¬(¬σ1x ∧ σ2x) =
σ1(x ∨ ¬σ2x). Now, let i ∈ {2, 3}. Since σi(x ∨ ¬σ2x) = 1 it follows that
σi∃2x ≤ σi(x ∨ ¬σ2x).

(A6) By definition of ∃2 we have ∃2(x ∨ ¬σ2x) = ¬∃I(¬x ∧ σ2x). Thus,
by condition (1), we obtain σ1∃2(x ∨ ¬σ2x) = ¬∃B(¬σ1x ∧ σ2x). On the other
hand, σ1(∃2x ∨ ¬∃2σ2x) = ¬∃B(¬σ1x ∧ σ2x) ∨ ¬∃2σ2x ≥ ¬∃B(¬σ1x ∧ σ2x).



An Alternative Definition of Quantifiers 13

Then σ1∃2(x∨¬σ2x) ≤ σ1(∃2x∨¬∃2σ2x). It is straightforward to check directly
that σi∃2(x∨¬σ2x) ≤ σi(∃2x∨¬∃2σ2x) = 1, for i ∈ {2, 3}. Hence, by (MDP),
we conclude ∃2(x ∨ ¬σ2x) ≤ ∃2x ∨ ¬∃2σ2x. �

Proposition 4.3. Let ∃2 and ∃′
2 be two 2/3-existential quantifiers on an L4-

algebra L such that coincide on B(L). Then ∃2 = ∃′
2.

Proof. It is a consequence of (A3) and (P16). �

Let L be an L4-algebra. It is clear that σ3(IL) is an ideal of B(L). Let
IB := σ3(IL). Notice that the following property holds:

for each p ∈ IB there exists a unique t ∈ IL such that p = σ3t. (u)

Indeed, if p ∈ IB there exists t ∈ IL such that p = σ3t. Suppose that there
exists t′ ∈ IL such that p = σ3t

′. Thus σ3t
′ = σ3t and since both elements are

in IL we have σit
′ = σit for i ∈ {1, 2}. Then t = t′ follows by (MDP).

Theorem 4.4. Let L be an L4-algebra.
(1) Let ∃2 : L → L be a 2/3-existential quantifier. Then, for all p ∈ B(L),

p ∈ IB implies ∃2(p) ∈ IB.
(2) Let ∃ : B(L) → B(L) be an existential quantifier of Boolean algebras.

Then ∃ can be extended to a (necessarily unique) 2/3-existential quanti-
fier on L if and only if ∃p ∈ IB whenever that p ∈ IB.

Proof. Item (1) follows immediately from (A3).
(2) Let ∃ : B(L) → B(L) be an existential quantifier of Boolean algebras

which satisfies the following property: p ∈ IB implies ∃p ∈ IB . Notice that for
each x ∈ L, by (L9), x ∧ ¬x = (¬x ∧ σ2x) ∨ (x ∧ ¬σ2x) with ¬x ∧ σ2x ∈ IL

and x ∧ ¬σ2x ∈ IL. Hence, ∃(σ3(¬x ∧ σ2x)) ∈ IB and ∃(σ3(x ∧ ¬σ2x)) ∈ IB .
Therefore, by Property (u), there exist unique elements tx ∈ IL and vx ∈ IL

such that

∃σ3(¬x ∧ σ2x) = σ3tx and ∃σ3(x ∧ ¬σ2x) = σ3vx. (4.1)

We define the operator ∃2 : L → L as follows:

∃2x := (∃σ2x ∧ ¬tx) ∨ vx.

We claim that ∃2 is a 2/3-existential quantifier that extends ∃. Indeed, if
x ∈ B(L) then x = σ2x and σ3tx = 0 = σ3vx, hence tx = vx = 0 and
∃2x = (∃x ∧ 1) ∨ 0 = ∃x. Therefore, ∃2x = ∃x for all x ∈ B(L). Now, we want
to prove conditions (A1)-(A6) of Definition 2.5.

Since ∃2 and ∃ coincide on B(L), it follows immediately that conditions
(A1), (A2) and (A3) hold. For (A4), let x, y ∈ L and let z := x ∧ ∃2y. Then

∃2(x ∧ ∃2y) = ∃2z = (∃σ2z ∧ ¬tz) ∨ vz,

where tz, vz ∈ IL are the unique elements such that σ3tz = ∃σ3(¬z ∧ σ2z) and
σ3vz = ∃σ3(z∧¬σ2z). Moreover, ∃2x = (∃σ2x∧¬tx)∨vx where tx, vx ∈ IL are
the unique elements such that σ3tx = ∃σ3(¬x∧σ2x) and σ3vx = ∃σ3(x∧¬σ2x).

Now, we use the (MDP) principle to prove ∃2(x∧∃2y) = ∃2x∧∃2y. First,

σ1∃2z = (∃σ2z ∧ σ1¬tz) ∨ 0 = ∃σ2z ∧ ¬∃σ3(¬z ∧ σ2z). (4.2)
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Notice that ∃σ2z = ∃σ2(x ∧ ∃2y) = ∃(σ2x ∧ ∃σ2y) = ∃σ2x ∧ ∃σ2y. Since

σ3(¬z ∧ σ2z) = σ3((¬x ∨ ¬∃2y) ∧ σ2x ∧ σ2∃2y) =
[σ3(¬x ∧ σ2x) ∧ ∃σ2y] ∨ [σ2x ∧ ¬σ1∃2y ∧ σ2∃2y],

it follows that ∃σ3(¬z∧σ2z) = ∃[σ3(¬x∧σ2x)∧∃σ2y]∨∃[σ2x∧¬σ1∃2y∧∃σ2y].
Now, notice that σ1∃2y = σ1[∃σ2y ∧ ¬ty] = ∃σ2y ∧ ¬σ3ty = ∃σ2y ∧ ¬∃σ3(¬y ∧
σ2y) ∈ ∃(B(L)). Then,

∃σ3(¬z ∧ σ2z) = [∃σ3(¬x ∧ σ2x) ∧ ∃σ2y] ∨ [∃σ2x ∧ ¬σ1∃2y ∧ ∃σ2y] =
= [∃σ3(¬x ∧ σ2x) ∨ (∃σ2x ∧ ¬σ1∃2y)] ∧ ∃σ2y.

Hence, ¬∃σ3(¬z ∧ σ2z) = [¬σ3tx ∧ (¬∃σ2x ∨ σ1∃2y)] ∨ ¬∃σ2y. Therefore, by
replacing this term in (4.2) and taking into account that σ1∃2y ≤ σ2∃2y =
∃σ2y, we obtain σ1∃2z = ∃σ2x∧∃σ2y ∧ [(¬σ3tx ∧ (¬∃σ2x∨σ1∃2y))∨¬∃σ2y] =
∃σ2x∧¬σ3tx∧σ1∃2y. It is easy to cheek that σ1(∃2x∧∃2y) = [(∃σ2x∧¬σ3tx)∨
σ1vx] ∧ σ1∃2y = ∃σ2x ∧ ¬σ3tx ∧ σ1∃2y = σ1∃2z. On the other hand, σ2∃2z =
σ2(∃σ2z∧¬tz)∨0 = ∃σ2z∧1 = ∃σ2z = ∃σ2(x∧∃2y) = ∃σ2x∧∃σ2y = σ2(∃2x∧
∃2y), and similarly we have σ3∃2z = ∃σ3z = ∃σ3(x ∧ ∃2y) = σ3(∃2x ∧ ∃2y).

To prove (A5) we will use (MDP). Let x ∈ L. So ∃2x = (∃σ2x∧¬tx)∨ vx

where tx, vx ∈ IL are the unique elements such that σ3tx = ∃σ3(¬x ∧ σ2x)
and σ3vx = ∃σ3(x ∧ ¬σ2x). Then σ1∃2x = (∃σ2x ∧ ¬σ3tx) ∨ σ1vx = ∃σ2x ∧
¬σ3tx = ∃σ2x ∧ ¬∃(¬σ1x ∧ σ2x). Since ¬σ1x ∧ σ2x ≤ ∃(¬σ1x ∧ σ2x) we have
¬∃(¬σ1x ∧ σ2x) ≤ σ1(x ∨ ¬σ2x)) and thus σ1∃2x = ∃σ2x ∧ ¬∃(¬σ1x ∧ σ2x) ≤
¬∃(¬σ1x ∧ σ2x) ≤ σ1(x ∨ ¬σ2x). Since σj(x ∨ ¬σ2x) = 1 for j ∈ {2, 3} the
proof is complete.

Finally, to prove (A6) let x ∈ L and let z := x ∨ ¬σ2x. Then

∃2(x ∨ ¬σ2x) = ∃2z = (∃σ2z ∧ ¬tz) ∨ vz,

where tz, vz ∈ IL are the unique elements such that σ3tz = ∃σ3(¬z ∧ σ2z) and
σ3vz = ∃σ3(z ∧ ¬σ2z). Moreover

∃2x = (∃σ2x ∧ ¬tx) ∨ vx

where tx, vx ∈ IL are the unique elements such that σ3tx = ∃σ3(¬x ∧ σ2x)
and σ3vx = ∃σ3(x ∧ ¬σ2x). It is easy to check that σ2z = 1. Then vz = 0
and hence ∃2z = ¬tz. Moreover σ3tz = σ3tx, which implies tz = tx. Then
∃2x = (∃σ2x ∧ ¬tz) ∨ vx. Therefore, to prove (A6) we must show that

¬tz ≤ [(∃σ2x ∧ ¬tz) ∨ vx] ∨ ¬∃2σ2x,

which is true because [(∃σ2x∧¬tz)∨ vx]∨¬∃2σ2x = ¬tz ∨ vx ∨¬∃2σ2x ≥ ¬tz.
�

5. Completeness Theorems for Monadic Four-Valued
�Lukasiewicz Logics

In this section, we will prove a completeness theorem for the 2/3-monadic
four-valued �Lukasiewicz predicate logic. To this purpose, we follow a similar
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approach to that used by Krongold in [13] for the development of the classi-
cal monadic functional calculus of first order. To define a 2/3-monadic four-
valued �Lukasiewicz predicate logic, we use the axiomatization of the n-valued
�Lukasiewicz propositional calculus given by Cignoli in [4].

Firstly, we give a brief overview of a completeness theorem for the monadic
four-valued �Lukasiewicz predicate calculus corresponding to the standard uni-
versal quantifier. Due to a matter of simplicity throughout this section, we
shall deal with universal quantifiers instead of existential quantifiers. We prove
a completeness theorem for the monadic four-valued �Lukasiewicz predicate cal-
culus corresponding to the dual of the quantifier ∃ 2

3
, using the fact that both

quantifiers, the standard and the alternative one, are interdefinable.
In this part of the paper we shall consider an equivalent definition of

four-valued �Lukasiewicz algebras to that given in Sect. 1. We use the char-
acterization of �Lukasiewicz algebras in terms of symmetric Heyting algebras
given by Iturrioz in [12]. A four-valued �Lukasiewicz algebra (see [12] and
[4]) can be also defined as an algebra 〈A,∨,∧,⇒,¬, σ1, σ2, σ3, 0, 1〉 such that
〈A,∨,∧,⇒,¬, 0, 1〉 is a symmetric Heyting algebra [15] and σ1, σ2 and σ3 are
unary operations that satisfy conditions (L2), (L4), (L6), (L7) and
(L10) σ1x ∨ x = x,

(L11) σi(x ⇒ y) =
3∧

j=i

(σjx ⇒ σjy), for 1 ≤ i ≤ 3.

In Sect. 3, a monadic four-valued �Lukasiewicz algebra was defined as pairs
〈L,∃〉 where L is an L4-algebra and ∃ : L → L is an existential quantifier. The
dual quantifier associated with the existential quantifier ∃ is defined as usual
(i.e. ∀ = ¬∃¬). Thus, the class of monadic four-valued �Lukasiewicz algebras can
be also defined as pairs 〈A,∀〉 [1,2,7], where A is an L4-algebra and ∀ : A → A
is an operator, called universal quantifier, such that satisfies the following
properties: for every x, y ∈ A,
(ML1) ∀1 = 1;
(ML2) ∀x ≤ x;
(ML3) ∀(x ∨ ∀y) = ∀x ∨ ∀y;
(ML4) ∀σix = σi∀x, for 1 ≤ i ≤ 3.
It is not hard to check that if ∀ : A → A is an operator on an L4-algebra A
and ∃ : A → A is defined by ∃x = ¬∀¬x for all x ∈ A, then ∀ is an universal
quantifier if and only if ∃ is an existential quantifier. Moreover ∀x = ¬∃¬x
for all x ∈ A. Without loss of generality, we also denote by ML4 the class of
monadic L4-algebras (ML4-algebra) endowed with a universal quantifier. The
following proposition gives several classical properties on ML4-algebras.

Proposition 5.1. Let 〈A,∀〉 be an ML4-algebra. For every a, b ∈ A, the follow-
ing conditions hold:

(1) ∀0 = 0,
(2) a ∈ ∀(A) if and only if ∀a = a,
(3) ∀(a ∧ b) = ∀a ∧ ∀b,
(4) 〈B(L),∀/B(L)〉 is a monadic Boolean algebra and ∀(B(L)) = ∀(L)∩B(L),
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(5) ∀(∀a ⇒ b) = ∀a ⇒ ∀b,
(6) ∀(A) is an L4-subalgebra of A.

Proof. The proof is standard and it is ommited. �

A language L of a monadic four-valued �Lukasiewicz predicate logic con-
sists of a single variable x, a countable set of unary predicate letters {Pn : n ∈
ω}, a countable set of constant letters {an : n ∈ ω}, the binary logic connec-
tives ⇒,∧,∨, the unary logic connectives ¬, σ1, σ2, σ3, the universal quantifier
∀ and the punctuation symbols (, ). We denote by Fm(L) the set of all formu-
las of L defined as usual. We shall sometimes omit parentheses as long as no
ambiguity is caused. Given a formula α, we shall denote by α(t) the result of
substituting t in α for every free occurrence of x, where t = x or t = an, for
some constant letter an of L.

Let 〈A,∀〉 be a monadic L4-algebra. A constant of 〈A,∀〉 is an L4-
homomorphism c : A → ∀(A) such that the restriction of c to ∀(A) is the
identity function. We denote by C∀(A) the set of all constants of 〈A,∀〉. An
interpretation M of the language L is a system M = 〈A,∀, v, h〉 where 〈A,∀〉
is a monadic L4-algebra, v is a map from {Pn : n ∈ ω} into A and h is a map
from {an : n ∈ ω} into C∀(A). Each interpretation M = (A,∀, v, h) induces a
map v̂ : Fm(L) → A defined recursively as follows:

• v̂(Pn(x)) = v(Pn), for all n ∈ ω;
• v̂(Pn(am)) = h(am)(v(Pn)) = h(am)(v̂(Pn(x))), for all n,m ∈ ω;
• v̂(α ◦ β) = v̂(α) ◦ v̂(β) where ◦ ∈ {∧,∨ ⇒};
• v̂(σiα) = σiv̂(α), for i ∈ {1, 2, 3};
• v̂(¬α) = ¬v̂(α);
• v̂(∀xα) = ∀v̂(α).

Notice that v̂(α(am)) = h(am)(v̂(α)) for every constant letter am of L and
every α ∈ Fm(L).

Definition 5.2. A formula α ∈ Fm(L) is said to be:
(a) true in an interpretation M = 〈A,∀, v, h〉 of L (in symbols M � α) if

v̂(α) = 1;
(b) logically valid in L if M � α for every interpretation M of L.

Let Γ ⊆ Fm(L). If M � β for every β ∈ Γ we write M � Γ.

Definition 5.3. A formula α ∈ Fm(L) is logical consequence of a set Γ ⊆
Fm(L) (in symbols Γ � α) if for every interpretation M of L, M � Γ implies
M � α.

Proposition 5.4. Let 〈A,∀A〉 and 〈B,∀B〉 be monadic L4-algebras and let
f : A → B be an homomorphism. If c is a constant of A, then c∗ : f(A) →
∀B(f(A)) is a constant of f(A) where c∗(f(a)) = f(c(a)).

Proof. It is clear that (f(A),∀B) is a monadic subalgebra of (B,∀B). Moreover,
c(a) = ∀A(c(a)), thus f(c(a)) = f(∀A(c(a))) = ∀Bf(c(a)) ∈ ∀B(f(A)). To see
that c∗ is well defined (f can not be injective) it is enough to prove that for
every a ∈ A, f(a) = 1 implies f(c(a)) = 1. Let us suppose that f(a) = 1.



An Alternative Definition of Quantifiers 17

Then 1 = ∀B(f(a)) = f(∀A(a)) ≤ f(c(a)) because ∀Aa ≤ c(a). It easy to
see that c∗ is an L4-homomorphism and the restriction of c∗ to ∀B(f(A))
is the identity map, because c∗(∀B(f(a))) = c∗(f(∀A(a))) = f(c(∀A(a))) =
f(∀A(a)) = ∀B(f(a)), for all a ∈ A. �
Proposition 5.5. A formula α ∈ Fm(L) is logically valid if and only if α is
true in each interpretation 〈4X ,∀, v, h〉 where

(∀f)(x) =
∧

y∈X

f(y) (5.1)

for every f ∈ 4X and each x ∈ X.

Proof. Let α ∈ Fm(L). Suppose that α is not logically valid. So, there is
an interpretation M = 〈A,∀, v, h〉 such that v̂(α) < 1. Then, there exists a
maximal monadic implicative filter U of 〈A,∀〉 such that v̂(α) /∈ U [1, pp. 78].
Then A/U is a simple algebra and so it is isomorphic to a subalgebra of 4X for
some nonempty set X [1]. Thus, there is a monadic homomorphism χ : A → 4X

such that U = χ−1({1}). Let v∗ = χ ◦ v : {Pn : n ∈ ω} → 4X . Now, let an

be a constant letter of L. By Proposition 5.4, h(an)∗ is a constant of χ(A)
where h(an)∗(χ(a)) = χ(hA(an)(a)). Since 4 is an injective algebra [2, p. 371]
and ∀(χ(A)) ⊆ L4, it follows that h(an)∗ can be extended to a homomorphism
h(an) : 4X → 4 such that h(an) is a constant of 4X . Hence, we can define the
interpretation M∗ = 〈4X ,∀, v∗, h〉 of L where ∀ is defined as in (5.1). It is
not hard to check that v̂∗ = χ ◦ v̂. Then, we have that v̂∗(α) = χ(v̂(α)) �= 1.
Therefore, α is not true in the interpretation M∗ = 〈4X ,∀, v∗, h〉. �

Now, we propose the following set of axioms and rules of inference for
the monadic four-valued �Lukasiewicz predicate calculus Luk∗

4(∀). The axioms
(A1)–(A16) correspond to an axiomatization of the four-valued �Lukasiewicz
propositional calculus given by Cignoli in [4], which is an extension of the
classical intuitionistic calculus. Let us consider the following axiom-schemes,
where α ⇔ β is an abbreviation for (α ⇒ β) ∧ (β ⇒ α).
(A1) α ⇒ (β ⇒ α)
(A2) (α ⇒ (β ⇒ γ)) ⇒ ((α ⇒ β) ⇒ (α ⇒ γ))
(A3) α ⇒ (α ∨ β)
(A4) β ⇒ (α ∨ β)
(A5) (α ⇒ γ) ⇒ ((β ⇒ γ) ⇒ ((α ∨ β) ⇒ γ))
(A6) (α ∧ β) ⇒ α
(A7) (α ∧ β) ⇒ β
(A8) (α ⇒ β) ⇒ ((α ⇒ γ) ⇒ (α ⇒ (β ∧ γ)))
(A9) α ⇔ ¬¬α

(A10) σ1(α ⇒ β) ⇔ σ1(¬β ⇒ ¬α)
(A11) σi(α ∨ β) ⇔ σiα ∨ σiβ, for 1 ≤ i ≤ 3

(A12) σi(α ⇒ β) ⇔
3∧

j=i

(σjα ⇒ σjβ), for 1 ≤ i ≤ 3

(A13) σiσjα ⇔ σjα, for 1 ≤ i, j ≤ 3
(A14) σ1α ⇒ α
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(A15) σiα ⇔ ¬σ4−i¬α, for 1 ≤ i ≤ 3
(A16) σ1α ∨ ¬σ1α
(A17) ∀xα ⇒ α(t), with t = x or t = an

(A18) ∀x(α ⇒ β) ⇒ (α ⇒ ∀xβ), if x is not free in α
(A19) ∀xσiα ⇒ σi∀xα, for 1 ≤ i ≤ 3.

The rules of inference are: Modus Ponens (MP), Generalization (G) and
(R1): α/σ1α. The notions of proof and proof from a set of formulas are the
usual ones. We write Γ �L α if there exists a proof of α from Γ (we also say
that Γ implies syntactically α) and, if Γ = ∅ we write simply �L α.

Let L0 be the language corresponding to the four-valued �Lukasiewicz
propositional calculus given by Cignoli in [4] (see also [2]) with a count-
able set V ar = {qn : n ∈ ω} of propositional variables and let Fm(L0)
be the algebra of formulas of L0. A substitution of L0 in L is a function
s : V ar → Fm(L). Notice that s can be uniquely extended to a function
s : Fm(L0) → Fm(L) preserving propositional connectives. Thus, for every
interpretation M = 〈A,∀, v, h〉 of L and every substitution s of L0 in L, the
map v̂ ◦ s : Fm(L0) → A is an L4-homomorphism. A formula α ∈ Fm(L) is
said to be an instance of a tautology if there exists a tautology τ ∈ Fm(L0)
and a substitution s of L0 in L such that α = s(τ).

The proofs of the following two propositions are usual by an inductive
argument.

Proposition 5.6. Let α ∈ Fm(L) and let M = 〈A,∀, v, h〉 be an interpretation
of L. Then,

(i) if α is an instance of tautology, then α is logically valid;
(ii) if α is a sentence, then v̂(α) ∈ ∀(A).

Proposition 5.7. (Soundness) Let Γ ∪ {α} ⊆ Fm(L). If α is provable from Γ,
then α is logical consequence of Γ. In symbols, Γ �L α implies Γ � α.

Proposition 5.8. ([2, p. 480]) Let Γ ⊆ Fm(L) and α, α1, α2, β, β1, β2 ∈ Fm(L).
Then,
(D1) If Γ �L (α1 ⇔ β1) and Γ �L (α2 ⇔ β2) then Γ �L ((α1◦α2) ⇔ (β1◦β2)),

for ◦ ∈ {∧,∨,⇒}.
(D2) If Γ �L (α ⇔ β) then Γ �L (¬α ⇔ ¬β).
(D3) If Γ �L (α ⇔ β) then Γ �L (σiα ⇔ σiβ) for each i ∈ {1, 2, 3}.
(D4) If Γ �L (σiα ⇒ σiβ) for each i ∈ {1, 2, 3}, then Γ �L (α ⇒ β).
(D5) If Γ �L ¬α then Γ �L (α ⇒ β).

The proof of the following proposition is a consequence from axioms (A1)–
(A19) and properties (D1)–(D5).

Proposition 5.9. Let α, β, γ ∈ Fm(L). Then,
(E1) �L σ1(α ⇒ β) ⇒ (¬β ⇒ ¬α);
(E2) α ⇒ β �L ¬β ⇒ ¬α;
(E3) �L ¬(α ∧ β) ⇔ (¬α ∨ ¬β);
(E4) �L ¬(α ∨ β) ⇔ (¬α ∧ ¬β);
(E5) �L (α ⇒ ∀xβ) ⇒ ∀x(α ⇒ β), if x is not free in α.
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(E6) �L ∀x(α ⇒ β) ⇔ (α ⇒ ∀xβ), if x is not free in α.
(E7) �L ∀x(α ⇒ β) ⇒ (∀xα ⇒ ∀xβ).
(E8) �L ∀xα ⇒ (α ∨ β).
(E9) �L (α ∨ ∀xβ) ⇒ ∀x(α ∨ β), if x is not free in α.

(E10) �L σi(α ⇒ β) ⇒ (σiα ⇒ σiβ), for i ∈ {1, 2, 3}.
(E11) �L σiα ⇒ σjα, for i, j ∈ {1, 2, 3} and i < j.
(E12) �L ∀x(α ∧ β) ⇔ (∀xα ∧ ∀xβ).
(E13) α �L σiα, for i ∈ {1, 2, 3}.
(E14) �L σi∀xα ⇔ ∀xσiα, for i ∈ {1, 2, 3}.
(E15) α ⇒ β �L ∀xα ⇒ ∀xβ.

We define the following equivalence relation ≡ on Fm(L) given by the
following prescription: for all α, β ∈ Fm(L),

α ≡ β if and only if �L (α ⇔ β).

For each α ∈ Fm(L), α denotes the equivalence class of α. The Lindenbaum-
Tarski algebra F = 〈Fm(L)/≡,∧,∨,⇒,¬, σ1, σ2, σ3, 0, 1〉 is defined as usual,
with 1 := {α ∈ Fm(L) : �L α} and 0 := ¬1. Hence, F is a four-valued
�Lukasiewicz algebra [2,4].

In any L4-algebra A the following identities are satisfied (see [4]):

x ⇒ y = σ1(x ⇒ y) ∨ y and a ⇒ b = ¬a ∨ b

for all x, y ∈ A and for all a, b ∈ B(A). Then, these identities are satisfied in
the algebra F and thus we can obtain the following syntactical properties in
Luk∗

4(∀):

Proposition 5.10. Let α, β ∈ Fm(L). Then,
(E17) �L (α ⇒ β) ⇔ (σ1(α ⇒ β) ∨ β);
(E18) �L (σiα ⇒ σiβ) ⇔ (¬σiα ∨ σiβ), for all i ∈ {1, 2, 3}.
Corollary 5.11. Let α, β ∈ Fm(L). Then,
(E19) �L σi∀x(α ∨ β) ⇔ σi(α ∨ ∀xβ), if x is not free in α and i ∈ {1, 2, 3}.
(E20) �L ∀x(α ∨ β) ⇔ (α ∨ ∀xβ), if x is not free in α.

Proof. Let α, β ∈ Fm(L) be such that x is not free in α. Then, we have the
following proof of σi∀x(α ∨ β) ⇔ σi(α ∨ ∀xβ):

1. σi∀x(α ∨ β) ⇔ ∀xσi(α ∨ β) (E14)
2. σi∀x(α ∨ β) ⇔ ∀x(σiα ∨ σiβ) (Equiv., A11, E15)
3. σi∀x(α ∨ β) ⇔ ∀x(¬σiα ⇒ σiβ) (Equiv., E18, E15)
4. σi∀x(α ∨ β) ⇔ (¬σiα ⇒ ∀xσiβ) (Equiv., E6)
5. σi∀x(α ∨ β) ⇔ (¬σiα ⇒ σi∀xβ) (Equiv., E14
6. σi∀x(α ∨ β) ⇔ (σiα ∨ σi∀xβ) (Equiv., E18)
7. σi∀x(α ∨ β) ⇔ σi(α ∨ ∀xβ) (Equiv., A11).

Hence, �L σi∀x(α∨β) ⇔ σi(α∨∀xβ), if x is not free in α and i ∈ {1, 2, 3}.
(E20) is a consequence of the previous fact and (D5.8). �
Proposition 5.12. The pair 〈F,∀〉 is a monadic L4-algebra, where F is the
Lindenbaum-Tarski algebra of L and ∀ : Fm(L)/≡ → Fm(L)/≡ is defined by
∀α = ∀xα, for each α ∈ Fm(L).
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Proof. Notice that (E15) implies that the operation ∀ on F is well defined,
i.e., if α = β, then ∀α = ∀β. We must check that conditions (ML1)-(ML4)
hold. Notice that 1 = α ⇒ α. Then, from (A1) and (A17), we have that �L
∀x(α ⇒ α) ⇔ (α ⇒ α). Thus, ∀1 = 1 and hence condition (ML1) holds.
Condition (ML2) is a consequence of (A17). Condition (ML3) can be deduced
from (E20). Finally, (ML4) follows from (E14). �

For every constant letter an of the language L, we define the operation
cn : Fm(L)/≡ → Fm(L)/≡ by cn(α) = α(an) for each α ∈ Fm(L). The
following proposition is straightforward, and thus we omit its proof.

Proposition 5.13. Let an be a constant letter of L. Then, the operation cn is a
constant of the algebra 〈F,∀〉
Theorem 5.14. (Completeness) Let α ∈ Fm(L). Then, α is logically valid if
and only if α is provable. That is, � α if and only if �L α.

Proof. The implication �L α implies � α is a consequence of Proposition 5.7.
Now, assume that α is a logically valid formula. Consider the interpretation
ML = 〈F,∀, v, h〉 of L, where 〈F,∀〉 is the monadic L4-algebra defined in
Proposition 5.12, v : {Pn : n ∈ ω} → Fm(L)/≡ is the map given by v(Pn) =
Pn(x) and h : {an : n ∈ ω} → C (F) is defined by h(an) = cn (see Proposition
5.13). We show that for every formula α ∈ Fm(L), v̂(α) = α. We proceed by
induction.

• If α = Pn(x), then v̂(Pn(x)) = v(Pn) = Pn(x) = α;
• If α = Pn(am), then v̂(Pn(am)) = h(am)(v(Pn)) = cm(Pn(x)) = α;
• If α = β ◦ γ with ◦ ∈ {∧,∨,⇒}, then v̂(β ◦ γ) = v̂(β) ◦ v̂(γ) = β ◦ γ =

β ◦ γ = α;
• If α = ¬β, then v̂(¬β) = ¬v̂(β) = ¬β = ¬β = α;
• If α = σiβ for i ∈ {1, 2, 3}, then v̂(σiβ) = σiβ = σiβ = α;
• If α = ∀xβ, then v̂(∀xβ) = ∀v̂(β) = ∀β = ∀xβ = α.

Thus, since ML is an interpretation of L and α is logically valid, we have
1 = v̂(α) = α. Hence �L α.

The next step is to prove a completeness theorem for the monadic pred-
icate calculus corresponding to the 2/3-existential quantifier. To this end, we
shall consider the dual 2/3-universal quantifier ∀ 2

3
(for short, we write ∀2 in-

stead of ∀ 2
3
) of ∃ 2

3
defined as ∀ 2

3
= ¬∃ 2

3
¬.

Let A be an L4-algebra. An operation ∀2 : A → A is said to be a 2/3-
universal quantifier if the following conditions are satisfied, for every x, y ∈ A:

(U1) ∀21 = 1;
(U2) ∀2σix ≤ σix, for i ∈ {1, 2, 3};
(U3) ∀2σix = σi∀2x, for i ∈ {1, 2};
(U4) ∀2(x ∨ ∀2y) = ∀2x ∨ ∀2y;
(U5) x ∧ σ2¬x ≤ ∀2x;
(U6) ∀2x ∧ ¬∀2σ2x ≤ ∀2(x ∧ ¬σ2x).
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It is straightforward to check that an operation ∀2 : A → A is a 2/3-
universal quantifier if and only if the operation ∃2 : A → A defined by ∃2x :=
¬∀2¬x is a 2/3-existential quantifier, and ∀2x = ¬∃2¬x. Thus, given an L4-
algebra A and a 2/3-universal quantifier ∀2 : A → A, without loss of generality
we can say that 〈A,∀2〉 is a 2/3-monadic L4-algebra. Moreover, since the quan-
tifiers ∃2 and ∃ are interdefinable (Theorem 3.1), it follows that the quantifiers
∀2 and ∀ are interdefinable. More precisely we have
(I1) if 〈A,∀〉 is a monadic L4-algebra and we define ∀2x := ∀x∨¬∀(¬x∨σ2x),

then 〈A,∀2〉 is a 2/3-monadic L4-algebra;
(I2) if 〈A,∀2〉 is a 2/3-monadic L4-algebra and we define ∀x := ∀2σ3x∧∀2(x∨

¬σ3x), then 〈A,∀〉 is a monadic L4-algebra.
We consider the language L2 of a 2/3-monadic four-valued �Lukasiewicz

predicate calculus that consists of the same symbols that L, except for the
symbol ∀ which will be replaced by ∀2. We denote by Fm(L2) the set of all
formulas of L2 defined as usual. An interpretation M = 〈A,∀2, v, h〉 of L2 is
defined similarly to the corresponding notion of an interpretation of L and the
same thing happens for the notion of constant of a 2/3-monadic L4-algebra
and we denote the set of all constants of 〈A,∀2〉 by C∀2(A). The following
proposition is a consequence of the equations given in (I1) and (I2).

Proposition 5.15. Let A be an L4-algebra. Let ∀ be an universal quantifier and
∀2 be a 2/3-universal quantifier, defined on A. If ∀ and ∀2 are interdefinable
by the equations in (I1) and (I2), then C∀(A) = C∀2(A).

Let us consider the map Φ: Fm(L) → Fm(L2) defined recursively, by
using (I2), as follows. Let α ∈ Fm(L):

• if α = Pn(t) with t = x or t = an, then Φ(α) = α;
• if α = ¬β, then Φ(α) = ¬Φ(β);
• if α = σiβ for i ∈ {1, 2, 3}, then Φ(α) = σiΦ(β);
• if α = β ◦ γ for ◦ ∈ {∧,∨,⇒}, then Φ(α) = Φ(β) ◦ Φ(γ);
• if α = ∀xβ, then Φ(α) = ∀2xσ3Φ(β) ∧ ∀2x (Φ(β) ∨ ¬σ3Φ(β)).

Now, using the map Φ and axioms (A1)–(A19), we propose a 2/3-monadic
predicated calculus on L2 as follows. Axioms (B1)–(B16) are the same that
axioms (A1)–(A16) on L taking into account the formulas α, β, γ ∈ Fm(L2);
for α, β ∈ Fm(L2),
(B17) (∀2xσ3α ∧ ∀2x(α ∨ ¬σ3α)) ⇒ α(t), with t = x or t = an;
(B18) [∀2xσ3(α ⇒ β) ∧ ∀2x ((α ⇒ β) ∨ ¬σ3(α ⇒ β))] ⇒

⇒ [α ⇒ (∀2xσ3β ∧ ∀2x(β ∨ ¬σ3β))], if x is not free in α;
(B19) [∀2xσ3σiα ∧ ∀2x(σiα ∨ ¬σ3σiα)] ⇒ σi [∀2xσ3α ∧ ∀2x(α ∨ ¬σ3α)];
(B20) ∀2xα ⇔ [∀2xσ3α ∧ ∀2x(α ∨ ¬σ3α)] ∨ ¬∀2x(¬α ∨ σ2α).

The rules of inference are Modus Ponens (MP), Generalization (G) and
(R1). Notice that axioms (B17), (B18) and (B19) are the image by Φ of axioms
(A17), (A18) and (A19), respectively. Axiom (B20) is necessary to show that
Φ acts like a translator from L to L2, see Proposition 5.18.

The binary relation ≡2 is defined on Fm(L2) in a similar way as the
relation ≡ was defined on Fm(L).
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Proposition 5.16. Let α ∈ Fm(L). If α is provable in L, then Φ(α) is provable
in L2.

Proof. Let α ∈ Fm(L) be a provable formula in L. So, there is a proof
δ1, . . . , δn of α. We show by induction that Φ(δj) is provable in L2 for each
j = 1, . . . , n.

• It is clear that if δj is an axiom of L then Φ(δj) is an axiom of L2.
• Assume that there are indexes i, k < j such that δj is obtained from

δi and δk = δi ⇒ δj by (MP). So, by inductive hypothesis Φ(δi) and
Φ(δk) = Φ(δi) ⇒ Φ(δj) are provable in L2, then by (MP) Φ(δj) is provable
in L2.

• Assume that there is an index i < j such that δj is obtained from δi by
(G). That is, δj = ∀xδi. Thus, Φ(δj) = ∀2xσ3Φ(δi)∧∀2x(Φ(δi)∨¬σ3Φ(δi))
where by inductive hypothesis Φ(δi) is provable in L2. Then, we have the
following proof
1. Φ(δi) ⇒ σ3Φ(δi) (Taut)
2. Φ(δi) (Hyp)
3. σ3Φ(δi) (1,2, MP)
4. ∀2xσ3Φ(δi) (3, G)
5. Φ(δi) ⇒ (Φ(δi) ∨ ¬σ3Φ(δi)) (B3)
6. Φ(δi) ∨ ¬σ3Φ(δi) (2,5, MP)
7. ∀2x (Φ(δi) ∨ ¬σ3Φ(δi)) (6, G)
8. ∀2xσ3Φ(δi) ∧ ∀2x (Φ(δi) ∨ ¬σ3Φ(δi)) (4,7, Conjunction).
Hence, Φ(δj) is provable in L2.

• Assume that there exists an index i < j such that δj is obtained from
δi by the rule (R1). So, δj = σ1δi. By inductive hypothesis, Φ(δi) is
provable in L2. Then, by (R1) we have that σ1Φ(δi) is provable in L2.
Since σ1Φ(δi) = Φ(σ1δi) = Φ(δj), it follows that Φ(δj) is provable in
L2. �

The following theorem can be proved without difficulty by the interde-
finability of the quantifiers ∀ and ∀2 and so we omit its proof.

Theorem 5.17 (Soundness). Every provable formula in L2 is logically valid in
L2.

Let us consider the map Ψ: Fm(L2) → Fm(L) defined recursively, using
(I1), as follows. Let α ∈ Fm(L2):

• if α = Pn(t) with t = x or t = an, then Ψ(α) = α;
• if α = ¬β, then Ψ(α) = ¬Ψ(β);
• if α = σiβ, then Ψ(α) = σiΨ(β);
• if α = β ◦ γ with ◦ ∈ {∧,∨,⇒}, then Ψ(α) = Ψ(β) ◦ Ψ(γ);
• if α = ∀2xβ, then Ψ(α) = ∀xΨ(β) ∨ ¬∀x (¬Ψ(β) ∨ σ2Ψ(β)).

Proposition 5.18. Let α ∈ Fm(L2) and β ∈ Fm(L). Then,
(1) ΦΨ(α) ≡2 α;
(2) ΨΦ(β) ≡ β.
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Proof. We prove this proposition by induction. Let α ∈ Fm(L2) and β ∈
Fm(L).

(1) It is straightforward to prove that ΦΨ(α) ≡2 α when α = Pn(t)
with t = x or t = an, α = ¬γ, α = σiγ with i ∈ {1, 2, 3} or α = γ1 ◦ γ2
with ◦ ∈ {∧,∨,⇒}. Now, suppose that α = ∀2xγ. Thus, Ψ(α) = ∀xΨ(γ) ∨
¬∀x (¬Ψ(γ) ∨ σ2Ψ(γ)). Then, we have that

ΦΨ(α) = [∀2xσ3ΦΨ(γ) ∧ ∀2x (ΦΨ(γ) ∨ ¬σ3ΦΨ(γ))] ∨
∨¬[∀2xσ3 (¬ΦΨ(γ) ∨ σ2ΦΨ(γ)) ∧
∧∀2x [(¬ΦΨ(γ) ∨ σ2ΦΨ(γ)) ∨ ¬σ3 (¬ΦΨ(γ) ∨ σ2ΦΨ(γ))]] .

By inductive hypothesis ΦΨ(γ) ≡2 γ, then

ΦΨ(α) ≡2[∀2xσ3γ ∧ ∀2x(γ ∨ ¬σ3γ)]∨
∨ ¬[∀2xσ3(¬γ ∨ σ2γ) ∧ ∀2x[(¬γ ∨ σ2γ) ∨ ¬σ3(¬γ ∨ σ2γ)]].

Notice that �L2 σ3(¬γ ∨σ2γ), then (¬γ ∨σ2γ)∨¬σ3(¬γ ∨σ2γ) ≡2 (¬γ ∨σ2γ).
Hence, from (B20), we obtain

ΦΨ(α) ≡2 [∀2xσ3γ ∧ ∀2x(γ ∨ ¬σ3γ)] ∨ ¬∀2x(¬γ ∨ σ2γ) ≡2 ∀2xγ ≡2 α.

(2) It is straightforward to prove that ΨΦ(β) ≡ β when β = Pn(t) with
t = x or t = an, β = ¬γ, β = σiγ with i ∈ {1, 2, 3} or β = γ1 ◦ γ2 with
◦ ∈ {∧,∨,⇒}. Now, we assume that β = ∀xγ. By definition of Φ we have
Φ(β) = ∀2xσ3Φ(γ)∧∀2x(Φ(γ)∨¬σ3Φ(γ)). Then, by definition of Ψ, we obtain

ΨΦ(β) = [∀xσ3ΨΦ(γ) ∨ ¬∀x(¬σ3ΨΦ(γ) ∨ σ2σ3ΨΦ(γ))] ∧
∧[∀x(ΨΦ(γ) ∨ ¬σ3ΨΦ(γ)) ∨ ¬∀x[¬(ΨΦ(γ) ∨ ¬σ3ΨΦ(γ))
∨σ2(ΨΦ(γ) ∨ ¬σ3ΨΦ(γ))]].

By inductive hypothesis ΨΦ(γ) ≡ γ and thus, we have

ΨΦ(β) ≡ [∀xσ3γ ∨ ¬∀x(¬σ3γ ∨ σ3γ)] ∧
∧[∀x(γ ∨ ¬σ3γ) ∨ ¬∀x[¬(γ ∨ ¬σ3γ) ∨ (σ2γ ∨ ¬σ3γ)]]

and so

ΨΦ(β) ≡ ∀xσ3γ ∧ [∀x(γ ∨ ¬σ3γ) ∨ ¬∀x(¬γ ∨ σ2γ ∨ ¬σ3γ)].

Then, by property (D4) of Proposition 5.8 and properties (E12) and (E14), we
have ΨΦ(β) ≡ ∀xγ. Hence ΨΦ(β) ≡ β. �

Proposition 5.19. Let α ∈ Fm(L2). If α is logically valid in L2, then Ψ(α) is
logically valid in L.

Proof. Let α ∈ Fm(L2). Assume that α is logically valid in L2. Let M =
〈A,∀, v, h〉 be an interpretation of L. We need to prove that M � Ψ(α).
We define the interpretation M∗ = 〈A,∀2, v

∗, h〉 of L2 where ∀2 is the 2/3-
universal quantifier defined by ∀ as in (I1) on page 21 and v∗ := v. Note that
v̂ : Fm(L) → A and v̂∗ : Fm(L2) → A. Now, we show that (v̂ ◦ Ψ)(β) = v̂∗(β)
for all β ∈ Fm(L2). We proceed by induction.

• If β = Pn(x), then (v̂ ◦ Ψ) (Pn(x)) = v̂ (Ψ(Pn(x))) = v̂(Pn(x)) = v(Pn) =
v∗(Pn) = v̂∗(Pn(x));
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• if β = Pn(am), then (v̂ ◦ Ψ) (Pn(am)) = v̂ (Ψ(Pn(am))) = v̂(Pn(am)) =
h(am)(v(Pn)) = h(am)(v∗(Pn)) = v̂∗(Pn(am));

• if β = ¬γ, then (v̂ ◦ Ψ) (¬γ) = v̂ (Ψ(¬γ)) = ¬v̂ (Ψ(γ)) = ¬v̂∗(γ) =
v̂∗(¬γ);

• if β = σiγ with i ∈ {1, 2, 3}, then (v̂ ◦ Ψ) (σiγ) = v̂ (Ψ(σiγ)) = σiv̂ (Ψ(γ))
= σiv̂∗(γ) = v̂∗(σiγ);

• if β = γ1∗γ2 with ∗ ∈ {∧,∨,⇒}, then (v̂ ◦ Ψ) (γ1 ∗ γ2) = v̂ (Ψ(γ1 ∗ γ2)) =
v̂ (Ψ(γ1)) ∗ v̂ (Ψ(γ2)) = v̂∗(γ1) ∗ v̂∗(γ2) = v̂∗(γ1 ∗ γ2);

• if β = ∀2xγ, then (v̂ ◦ Ψ) (∀2xγ) = v̂(∀xΨ(γ) ∨ ¬∀x(¬Ψ(γ) ∨ σ2Ψ(γ))) =
∀v̂Ψ(γ) ∨ ¬∀ (¬v̂Ψ(γ) ∨ σ2v̂Ψ(γ)) = ∀2v̂Ψ(γ) = ∀2v̂∗(γ) = v̂∗(∀2xγ).

Now, since α is logically valid in L2, we have v̂∗(α) = 1. Then 1 = v̂∗(α) =
(v̂ ◦ Ψ) (α) = v̂ (Ψ(α)). Therefore, Ψ(α) is logically valid in L.

Theorem 5.20 (Completeness). Let α be a formula of L2. Then, α is logically
valid if and only if α is provable in L2.

Proof. Let α ∈ Fm(L2) be logically valid. So, by the previous proposition,
Ψ(α) is logically valid in L. Then, by Theorem 5.14, we have that Ψ(α) is
provable in L. Now, by Proposition 5.16, we have that ΦΨ(α) is provable in
L2 and, from Proposition 5.18 we have ΦΨ(α) ≡2 α. Therefore α is provable
in L2.
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