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Congruences on near-Heyting algebras
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Abstract. A near-Heyting algebra is a join-semilattice with a top element
such that every principal upset is a Heyting algebra. We establish a one-
to-one correspondence between the lattices of filters and congruences of
a near-Heyting algebra. To attain this aim, we first show an embedding
from the lattice of filters to the lattice of congruences of a distributive
nearlattice. Then, we describe the subdirectly irreducible and simple near-
Heyting algebras. Finally, we fully characterize the principal congruences
of distributive nearlattices and near-Heyting algebras. We conclude that
the varieties of distributive nearlattices and near-Heyting algebras have
equationally definable principal congruences.
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1. Introduction

A distributive nearlattice (DN-algebra for short) is a join-semilattice with a
top element such that every principal upset is a distributive lattice with respect
to the order induced by the join operation. Thus, DN-algebras is a general-
isation of semi-boolean algebras introduced by Abbott [1]. DN-algebras are
polynomially equivalent to algebras with only one ternary connective satis-
fying some identities [11]; the variety of DN-algebras was studied in several
papers [9,10,7,5,8,15]. Near-Heyting algebras are DN-algebras such that every
principal upset is a pseudocomplemented distributive lattice. Near-Heyting
algebras were introduced by Chajda and Kolař́ık in [11] and they proved that
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these algebras are polynomially equivalent to algebras of type (3,2,0) satisfy-
ing some identities. We show that near-Heyting algebras can be equivalently
defined as DN-algebras in which every principal upset is a Heyting algebra.

The purpose of this work is to study the lattice of congruences of near-
Heyting algebras and obtain some consequences for this variety.

2. Distributive nearlattices

In this section, we present the basic facts on distributive nearlattices. Our
main references for the theory of nearlattices are [9,11,2,19,4]. We assume
that the reader is familiar with elementary order and lattice theoretical notions
[13,17,3].

Definition 2.1. A distributive nearlattice (DN-algebra for short) is an algebra
〈A,m, 1〉 of type (3,0) satisfying the following identities:
(N1) m(x, y, x) = x;
(N2) m(m(x, y, z),m(y,m(u, x, z), z), w) = m(w,w,m(y,m(x, u, z), z));
(N3) m(x, x, 1) = 1;
(N4) m(x, x,m(y, z, w)) = m(m(x, x, y),m(x, x, z), w).

Let us denote by DN the variety of DN-algebras.

Theorem 2.2 [11]. Let 〈A,m, 1〉 be an algebra of type (3,0) and let ∨ be the
binary operation on A defined by x ∨ y := m(x, x, y). Then, 〈A,m, 1〉 is a
DN-algebra if and only if 〈A,∨, 1〉 is a join-semilattice with top element such
that for every a ∈ A, the principal upset [a) = {x ∈ A : a ≤ x } is a bounded
distributive lattice with respect to the order induced by ∨, and m(x, y, a) =
(x ∨ a) ∧a (y ∨ a).

For every DN-algebra 〈A,m, 1〉, we will consider the join operation ∨ on
A as defined in the previous theorem and the partial order ≤ on A induced by
∨, that is, x ≤ y if and only if x ∨ y = y. For every element a ∈ A, we denote
the meet in [a) by ∧a. Notice that the meet x∧ y exists in A if and only if x, y
have a common lower bound in A. Hence, x ∧ y = x ∧a y for all x, y ∈ [a). For
each X ⊆ A, we denote by [X) the set of all a ∈ A such that a ≥ x for some
x ∈ X. We say that a subset X ⊆ A is an upset if X = [X).

Let A be a DN-algebra. A subset F ⊆ A is called a filter of A if: (i) 1 ∈ F ,
(ii) F is an upset and (iii) if a, b ∈ F and a ∧ b exists in A, then a ∧ b ∈ F . Let
us denote by Fi(A) the set of all filters of A. Arbitrary intersection of filters of
A is again a filter of A. Thus, Fi(A) is a closure system. Let 〈.〉 be the closure
operator associated with Fi(A). Thus

〈X〉 = { a ∈ A : there exist a1, . . . , an ∈ [X) such that a = a1 ∧ · · · ∧ an },

for any set X ⊆ A. Hence, 〈Fi(A),∩,∨〉 is a complete lattice where for every
F,G ∈ Fi(A),

F ∨ G = 〈F ∪ G〉 = { a ∈ A : a = x ∧ y for some x ∈ F, y ∈ G }
(see [9, pp. 38]). For X ∈ A and a ∈ A, the filter 〈X ∪ {a}〉 is denoted by
〈X, a〉.
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A proper filter P of A is said to be prime if a ∈ P or b ∈ P whenever
a ∨ b ∈ P .

Lemma 2.3 [12]. Let A be a DN-algebra. Then Fi(A) is a distributive lattice.

Lemma 2.4 [15]. Let A be a DN-algebra and let a, x1, . . . , xn ∈ A. Then, a ∈
〈{x1, . . . , xn}〉 if and only if a = (x1 ∨ a) ∧ · · · ∧ (xn ∨ a).

Proposition 2.5 [18]. Let A be a DN-algebra. Let F be a filter of A and a ∈ A.
If a /∈ F , then there exists a prime filter P of A such that F ⊆ P and a /∈ P .

3. Near-Heyting algebras

Definition 3.1. An algebra 〈A,m, n, 1〉 of type (3,2,0) is said to be a near-
Heyting algebra if 〈A,m, 1〉 is a DN-algebra and the following identities hold:

(NH1) y ≤ n(x, y);
(NH2) n(x, x) = 1;
(NH3) n(1, x) = x;
(NH4) m(x, n(m(x, y, z), z), z) = m(x, n(y, z), z).

We denote by NHA the variety of near-Heyting algebras.

Proposition 3.2 [9, Theorem 5.5.1]. Assume that 〈A,m, n, 1〉 is an algebra of
type (3,2,0) such that 〈A,m, 1〉 is a DN-algebra. Then 〈A,m, n, 1〉 is a near-
Heyting algebra if and only if for every a ∈ A, the principal upset [a) is a
bounded distributive pseudocomplemented lattice and n(x, a) is the pseudocom-
plement of x ∨ a in [a).

Near-Heyting algebras are called sectionally pseudocomplemented nearlat-
tices in [11,9]. The name “near-Heyting algebra” is justified by the following
result.

Proposition 3.3. Assume that 〈A,m, n, 1〉 is an algebra of type (3,2,0) such
that 〈A,m, 1〉 is a DN-algebra. Then 〈A,m, n, 1〉 is a near-Heyting algebra if
and only if for every a ∈ A, the principal upset [a) is a Heyting algebra under
the operations induced by the partial ordering of A and the Heyting implication
→a in [a) is given by: x →a y := n(x, x ∧a y) for all x, y ∈ [a).

Proof. It follows from Proposition 3.2 and [3, Theorem IX.2.8]. �

Recall that a join-semilattice 〈A,∨, 1〉 is called a semi-boolean algebra
[1] if for every a ∈ A, [a) is a Boolean algebra. It was proved in [1] that
semi-boolean algebras are polynomially equivalent to implication algebras (also
called Tarski algebras).

Proposition 3.4. Let 〈A,m, n, 1〉 be a near-Heyting algebra. Then, 〈A,∨, 1〉 is
a semi-boolean algebra if and only if the identity (x ∨ z) ∨ n(x, z) = 1 holds.

Proof. It is a consequence of Proposition 3.2 and [3, pp. 155]. �
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4. Congruences on near-Heyting algebras

For an algebra A, we denote by Con(A) the lattice of its congruences. The
primary purpose of this section is to establish an isomorphism between the
lattice of filters of a near-Heyting algebra and the lattice of its congruences.
To attain this, we first show an embedding from the lattice of filters of a
DN-algebra into the lattice of its congruences. Finally, we characterize the
subdirectly irreducible elements of NHA.

Lemma 4.1 [19]. Let 〈A,m, 1〉 be a DN-algebra. An equivalence relation θ is a
congruence on A if and only if θ is a congruence of 〈A,∨〉 and (a∧ c) θ (b∧d)
whenever a ∧ c, b ∧ d exist in A and (a, b), (c, d) ∈ θ.

Let 〈A,m, 1〉 be a DN-algebra. Let F ∈ Fi(A). We define the binary
relation θF ⊆ A × A as follows:

a θF b ⇐⇒ there is a finite set X ⊆ F (〈X, a〉 = 〈X, b〉). (C)

Proposition 4.2. For every DN-algebra A, the map Γ: Fi(A) → Con(A) defined
by Γ(F ) = θF is a lattice embedding and 1/θF = F .

Proof. Let F ∈ Fi(A) and θF be defined by (C). It is clear that θF is a reflexive
and symmetric relation. In order to prove transitivity, assume that a θF b and
b θF c. Then, there are finite sets X,Y ⊆ F such that 〈X, a〉 = 〈X, b〉 and
〈Y, b〉 = 〈Y, c〉. Thus 〈X ∪ Y, a〉 = 〈X ∪ Y, b〉 = 〈X ∪ Y, c〉 and since X ∪ Y is a
finite subset of F , it follows that a θF c.

Now let us show that θF is a congruence. Assume that a θF b and c θF d.
Without loss of generality we can assume that there is a finite Z ⊆ F such
that 〈Z〉 ∨ [a) = 〈Z〉 ∨ [b) and 〈Z〉 ∨ [c) = 〈Z〉 ∨ [d). Then

(〈Z〉 ∨ [a)) ∩ (〈Z〉 ∨ [c)) = (〈Z〉 ∨ [b)) ∩ (〈Z〉 ∨ [d)).

Since Fi(A) is a distributive lattice, it follows that 〈Z〉 ∨ [a∨ c) = 〈Z〉 ∨ [b∨ d).
Hence, (a ∨ c) θF (b ∨ d). Now, suppose that a ∧ c and b ∧ d exist in A. Notice
that 〈Z〉 ∨ [a) ∨ [c) = 〈Z〉 ∨ [b) ∨ [d). Thus, 〈Z〉 ∨ [a ∧ c) = 〈Z〉 ∨ [b ∧ d). Hence
(a ∧ c) θF (b ∧ d). Therefore, by Lemma 4.1, θF is a congruence on A. It is
straightforward to show that 1/θF = F and F ⊆ G if and only if θF ⊆ θG
for every F,G ∈ Fi(A). Next, we prove that Γ is a lattice homomorphism. Let
F,G ∈ Fi(A). First we prove θF∩G = θF ∩ θG. Let x, y ∈ A. If (x, y) ∈ θF∩G,
then there exists a finite set Z ⊆ F ∩ G such that 〈Z, x〉 = 〈Z, y〉. Since F ∩ G
is a subset of F and also of G, it is clear that (x, y) ∈ θF and (x, y) ∈ θG, hence
θF∩G ⊆ θF ∩ θG. Suppose now that (x, y) ∈ θF ∩ θG. Then, there exist finite
sets X ⊆ F and Y ⊆ G such that 〈X,x〉 = 〈X, y〉 and 〈Y, x〉 = 〈Y, y〉. Let
Z = { f ∨ g : f ∈ X and g ∈ Y }. We assert 〈Z, x〉 = 〈X,x〉 ∩ 〈Y, x〉. Indeed,
since Z ⊆ 〈X,x〉 ∩ 〈Y, x〉, it follows that 〈Z, x〉 ⊆ 〈X,x〉 ∩ 〈Y, x〉. Conversely,
let a ∈ 〈X,x〉 ∩ 〈Y, x〉 and suppose X = {f1, . . . , fk} and Y = {g1, . . . , gr};
then by Lemma 2.4 we have

a = (f1 ∨ a) ∧ · · · ∧ (fk ∨ a) ∧ (x ∨ a) = (g1 ∨ a) ∧ · · · ∧ (gr ∨ a) ∧ (x ∨ a).
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Thus, since [a) is a distributive lattice, we obtain

a = a ∨ a =
∧

1≤i≤k
1≤j≤r

(fi ∨ gj ∨ a) ∧ (x ∨ a).

Then a ∈ 〈Z, x〉 and so 〈X,x〉 ∩ 〈Y, x〉 ⊆ 〈Z, x〉. In a similar way we get
〈Z, y〉 = 〈X, y〉 ∩ 〈Y, y〉. Hence, there exists a finite set Z ⊆ F ∩ G such that
〈Z, x〉 = 〈X,x〉 ∩ 〈Y, x〉 = 〈X, y〉 ∩ 〈Y, y〉 = 〈Z, y〉, therefore (x, y) ∈ θF∩G.

Now, we prove that θF∨G = θF ∨ θG. It is clear that θF ⊆ θF∨G and
θG ⊆ θF∨G; we will show that θF∨G is the least upper bound of {θF , θG}. Let
θ ∈ Con(A) be such that θF ⊆ θ and θG ⊆ θ and let (a, b) ∈ θF∨G. Then
there exists a finite set H = {h1, . . . , hm} ⊆ F ∨ G such that 〈H, a〉 = 〈H, b〉.
For each 1 ≤ i ≤ m, hi = fi ∧ gi for some fi ∈ F and gi ∈ G. As 〈H, a〉 =
[h1) ∨ . . . [hm) ∨ [a), for each 1 ≤ i ≤ m, we can write

[fi) ∩ ([h1) ∨ . . . [hm) ∨ [a)) = [fi) ∩ ([h1) ∨ . . . [hm) ∨ [b))

and since Fi(A) is a distributive lattice, we obtain

[fi) ∩ ([h1) ∨ . . . [hm) ∨ [a)) = ([fi) ∩ [h1)) ∨ · · · ∨ ([fi) ∩ [hm)) ∨ ([fi) ∩ [a))
= [fi ∨ h1) ∨ · · · ∨ [fi ∨ hm) ∨ [fi ∨ a)
= 〈{fi ∨ h1, . . . , fi ∨ hm}, fi ∨ a〉.

Hence,

〈{fi ∨ h1, . . . , fi ∨ hm}, fi ∨ a〉 = 〈{fi ∨ h1, . . . , fi ∨ hm}, fi ∨ b〉
for each 1 ≤ i ≤ m. Since fi∨hj ∈ F for all 1 ≤ i, j ≤ m, we have (fi∨a, fi∨b) ∈
θF ⊆ θ, and analogously we obtain (gi∨a, gi∨b) ∈ θG ⊆ θ for every 1 ≤ i ≤ m.
So

hi ∨ a = (fi ∨ a) ∧ (gi ∨ a) θ (fi ∨ b) ∧ (gi ∨ b) = hi ∨ b

for every 1 ≤ i ≤ m and thus

(h1 ∨ a) ∧ · · · ∧ (hm ∨ a) θ (h1 ∨ b) ∧ · · · ∧ (hm ∨ b).

Now, since 〈H, a〉 = 〈H, b〉, it follows by Lemma 2.4 that

a = (h1 ∨ a) ∧ · · · ∧ (hm ∨ a) ∧ (b ∨ a) and
b = (h1 ∨ b) ∧ · · · ∧ (hm ∨ b) ∧ (a ∨ b).

Hence, we obtain a θ b. Therefore θF∨G ⊆ θ. This completes the proof. �

Let us note that the lattice embedding Γ is not, in general, an isomor-
phism. Next, we show that in the setting of near-Heyting algebras the congru-
ences are in a one-to-one correspondence with the filters. We start with the
following results.

Proposition 4.3 [6]. Let 〈H,∧,∨,→, 0, 1〉 be a Heyting algebra and F a filter
of H. Then, a → b /∈ F if and only if there exists a prime filter P of H such
that F ⊆ P , a ∈ P and b /∈ P .
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Next, we prove in the setting of near-Heyting algebras a similar result
to the previous one that will be very useful in what follows. Notice that the
notions of filter and prime filter on near-Heyting algebras are those given for
DN-algebras.

Proposition 4.4. Let 〈A,m, n, 1〉 be a near-Heyting algebra. Let F ∈ Fi(A) and
a, c ∈ A. If n(c, a) /∈ F , then there exists a prime filter P of A such that
F ⊆ P , c ∈ P and a /∈ P .

Proof. Suppose that n(c, a) /∈ F . So, it is clear that n(c, a) /∈ F ∩ [a) and
F ∩ [a) ∈ Fi([a)). By Propositions 3.2 and 3.3, we have n(c, a) = (c ∨ a) →a a.
Since (c ∨ a) →a a /∈ F ∩ [a) ∈ Fi([a)) and 〈[a),∧a,∨,→a, a, 1〉 is a Heyting
algebra, it follows by Proposition 4.3 that there is a prime filter Q of [a) such
that F ∩ [a) ⊆ Q, c ∨ a ∈ Q and a /∈ Q. It is clear that Q is in fact a filter of
A. Then, by Proposition 2.5, there is a prime filter P of A such that Q ⊆ P
and a /∈ P . Thus, we have F ∩ [a) ⊆ P . Let us show that F ⊆ P . Let x ∈ F .
So x ∨ a ∈ F ∩ [a) and then x ∨ a ∈ P . Thus, since P is prime and a /∈ P , it
follows that x ∈ P . Similarly, since c ∨ a ∈ P , it follows that c ∈ P . Hence, we
have that P is a prime filter of A such that F ⊆ P , c ∈ P and a /∈ P . �

Proposition 4.5. Let 〈A,m, n, 1〉 be a near-Heyting algebra. Let X ⊆ A be finite
and a, b, c ∈ A. Then 〈X,n(c, a)〉 = 〈X,n(c, b)〉 whenever 〈X, a〉 = 〈X, b〉.
Proof. Let a, b, c ∈ A and assume that 〈X, a〉 = 〈X, b〉. Let us prove that
n(c, a) ∈ 〈X,n(c, b)〉. Suppose that n(c, a) /∈ 〈X,n(c, b)〉. By Proposition 4.4,
there is a prime filter P of A such that 〈X,n(c, b)〉 ⊆ P , c ∈ P and a /∈ P .
Notice that X ⊆ P and n(c, b) ∈ P . If b ∈ P , then X ∪ {b} ⊆ P and thus
〈X, b〉 ⊆ P ; by hypotheses, this implies that 〈X, a〉 ⊆ P and then a ∈ P , which
is a contradiction. Hence b /∈ P . Since n(c, b)∧ (c∨ b) = b /∈ P and n(c, b) ∈ P ,
it follows that c ∨ b /∈ P . Thus c /∈ P and this is a contradiction. Hence
n(c, a) ∈ 〈X,n(c, b)〉. By an analogous argument we have n(c, b) ∈ 〈X,n(c, a)〉.
Therefore 〈X,n(c, a)〉 = 〈X,n(c, b)〉. �

Theorem 4.6. Let 〈A,m, n, 1〉 be a near-Heyting algebra and F ∈ Fi(A). Then,
the binary relation θF defined by (C) is a congruence of A.

Proof. By Proposition 4.2, we only need to prove that θF is a congruence with
respect to the operation n. Let a, b, c, d ∈ A and suppose that a θF b and
c θF d. Let us show that (1) n(a, c) θF n(b, c) and (2) n(b, c) θF n(b, d).

(1) Since θF is a congruence of the DN-algebra 〈A,m, 1〉, it follows that
(a ∨ c) θF (b ∨ c). Thus, there is a finite set X ⊆ F such that 〈X, a ∨ c〉 =
〈X, b ∨ c〉. Then, 〈X, a ∨ c〉 ∩ [c) = 〈X, b ∨ c〉 ∩ [c) and thus

[〈X〉 ∩ [c)] ∨ [a ∨ c) = [〈X〉 ∩ [c)] ∨ [b ∨ c)

because Fi(A) is a distributive lattice. Assume that X = {x1, . . . , xn} and let
z := (x1 ∨ c) ∧ · · · ∧ (xn ∨ c). Then 〈X〉 ∩ [c) = ([x1) ∨ · · · ∨ [xn)) ∩ [c) = [z).
Notice that z ∈ [c) and also z ∈ F . Hence,

[z ∧ (a ∨ c)) = [z) ∨ [a ∨ c) = [z) ∨ [b ∨ c) = [z ∧ (b ∨ c))
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and so z ∧ (a∨ c) = z ∧ (b∨ c). As [c) is a Heyting algebra and z ∈ [c), we have
z∧n(a, c) = z∧n(b, c) (see [3, Lemma VIII.4.2]). Then 〈z, n(a, c)〉 = 〈z, n(b, c)〉,
with z ∈ F . Hence n(a, c) θF n(b, c).

(2) It follows by Proposition 4.5.

Hence, from (1), (2) and transitive property we obtain n(a, c) θF n(b, d).
Therefore θF is a congruence relation of the near-Heyting algebra A. �

Now, we are ready to show one of the main results of this section.

Theorem 4.7. Let 〈A,m, n, 1〉 be a near-Heyting algebra. Then, the map
Γ: Fi(A) → Con(A) defined in Proposition 4.2 is a lattice isomorphism.

Proof. By Proposition 4.2 and Theorem 4.6, we have that Γ is a lattice
embedding. It only remains to prove that Γ is onto. Let θ ∈ Con(A). Let
F := 1/θ = {x ∈ A : x θ 1 }. It is easy to check that F ∈ Fi(A).
Let us prove that θF = θ. Suppose that a θF b. So, there is a finite set
X := {x1, . . . , xn} ⊆ F such that 〈X, a〉 = 〈X, b〉. Since a ∈ 〈X, b〉, it follows
by Lemma 2.4 that a = (x1 ∨ a) ∧ · · · ∧ (xn ∨ a) ∧ (b ∨ a). As F is a filter and
X ⊆ F , we have xi∨a ∈ F for all i = 1, . . . , n. So (xi∨a) θ 1 for all i = 1, . . . , n
and thus (x1∨a)∧· · ·∧(xn∨a) θ 1. Then (x1∨a)∧· · ·∧(xn∨a)∧(b∨a) θ (b∨a).
Hence a θ (b ∨ a). Analogously, we can show that b θ (a ∨ b). Therefore, a θ b.
Now, assume that a θ b. So n(a, b) θ n(b, b). By condition (NH2), we have
n(a, b) θ 1. Similarly, we have n(b, a) θ 1. Then n(a, b), n(b, a) ∈ F . Notice
that

(n(a, b) ∨ a) ∧ (n(b, a) ∨ a) ∧ (b ∨ a) = (n(a, b) ∨ a) ∧ ((n(b, a) ∧ (b ∨ a)) ∨ a)

= (n(a, b) ∨ a) ∧ a = a.

Then, by Lemma 2.4, we obtain a ∈ 〈{n(a, b), n(b, a)}, b〉. Similarly, b ∈
〈{n(a, b), n(b, a)}, a〉. Thus

〈{n(a, b), n(b, a)}, a〉 = 〈{n(a, b), n(b, a)}, b〉
with {n(a, b), n(b, a)} ⊆ F , hence a θF b. Thus Γ(F ) = θF = θ and therefore
Γ is onto. �

Now, as a consequence of the previous theorem, we can characterize sub-
directly irreducible algebras in NHA with a similar argument to that used in
the setting of Heyting algebras. We leave the details to the reader.

Corollary 4.8. An algebra A is subdirectly irreducible in NHA if and only if
A = A1 ⊕ 1 where A1 ∈ NHA.

Corollary 4.9. Two-element near-Heyting algebra 2 is the only simple algebra
in NHA.

5. Principal congruences in DN and NHA

The following proposition generalises the result in [9, Lemma 2.7.3] and fully
characterises the principal congruences on DN-algebras.



 78 Page 8 of 11 L. J. González and M. B. Lattanzi Algebra Univers.

Proposition 5.1. Let 〈A,m, 1〉 be a DN-algebra and a, b, x, y ∈ A. Then,

(x, y) ∈ θ(a, b) ⇐⇒

⎧
⎪⎨

⎪⎩

a ∨ b ∨ x = a ∨ b ∨ y,

x = (a ∨ x) ∧ (b ∨ x) ∧ (y ∨ x),
y = (a ∨ y) ∧ (b ∨ y) ∧ (x ∨ y).

(P)

Proof. Let us denote by Ψ the binary relation on A defined by the three above
identities. By Lemma 4.1, it is straightforward to show directly that Ψ is a
congruence on A and (a, b) ∈ Ψ. Thus θ(a, b) ⊆ Ψ. Now we prove that Ψ ⊆
θ(a, b). Let (x, y) ∈ Ψ. Thus, the identities in (P) hold. Since (a, b) ∈ θ(a, b),
we have (a∨x, a∨ b∨x), (a∨ y, a∨ b∨ y) ∈ θ(a, b). Then (a∨x, a∨ y) ∈ θ(a, b)
by using the first identity in (P). Similarly, (b ∨ x, b ∨ y) ∈ θ(a, b). Hence, by
(P), (x, y) ∈ θ(a, b). Therefore, Ψ = θ(a, b). �

Let 〈A,m, 1〉 be a DN-algebra and a, b, x ∈ A. Notice that (a∨x)∧(b∨x)∧
(y ∨ x) = m(m(a, b, x), y, x). Thus, the identities in (P) are actually equations
in the language of DN-algebras. Hence, we obtain the following two corollaries.
The reader can find in [16,14] the concepts of Universal Algebra mentioned
here.

Corollary 5.2. The variety DN has equationally definable principal congru-
ences.

Corollary 5.3. The variety DN has the congruence extension property.

Our next purpose is to obtain a characterization of the principal congru-
ences on near-Heyting algebras. We need the following facts.

Lemma 5.4. Let 〈A,m, n, 1〉 ∈ NHA and let F be a filter of A. If a, n(a, b) ∈ F ,
then b ∈ F .

Proof. Assume that a, n(a, b) ∈ F . Then (a ∨ b) ∧ n(a, b) ∈ F . Since n(a, b) is
the pseudocomplement of a∨ b in [b), it follows that (a∨ b)∧n(a, b) = b. Thus,
b ∈ F . �
Proposition 5.5. Let A ∈ NHA. Let a, b ∈ A be such that a ∧ b exists in A.
Then, for every x ∈ A, n(x, a ∧ b) = n(x, a) ∧ n(x, b).

Proof. Let x ∈ A. Notice that n(x, a) ∧ n(x, b) exists in A. Thus,

[x ∨ (a ∧ b)] ∧ [n(x, a) ∧ n(x, b)] = [(x ∨ a) ∧ (x ∨ b)] ∧ [n(x, a) ∧ n(x, b)]
= [(x ∨ a) ∧ n(x, a)] ∧ [(x ∨ b) ∧ n(x, b)]
= a ∧ b.

Then, since n(x, a ∧ b) is the pseudocomplement of x ∨ (a ∧ b) in [a ∧ b), we
have n(x, a) ∧ n(x, b) ≤ n(x, a ∧ b). In order to prove the inverse inequality,
suppose that n(x, a ∧ b) � n(x, a) ∧ n(x, b). Then, by Proposition 2.5, there is
a prime filter P of A such that n(x, a ∧ b) ∈ P and n(x, a) ∧ n(x, b) /∈ P . So
n(x, a) /∈ P or n(x, b) /∈ P . Suppose that n(x, a) /∈ P (similarly if n(x, b) /∈ P ).
Thus, by Proposition 4.4, there is a prime filter P1 such that P ⊆ P1, x ∈ P1

and a /∈ P1. So a ∧ b /∈ P1. Since x, n(x, a ∧ b) ∈ P1, it follows that a ∧ b ∈ P1,
which is a contradiction. This completes the proof. �
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Theorem 5.6. Let 〈A,m, n, 1〉 be a near-Heyting algebra and a, b ∈ A. Then,

(x, y) ∈ θ(a, b) ⇐⇒ n(n(a, b), n(n(b, a), x)) = n(n(a, b), n(n(b, a), y)).

Proof. Let Ψ be the equivalence relation on A defined by:

(x, y) ∈ Ψ ⇐⇒ n(n(a, b), n(n(b, a), x)) = n(n(a, b), n(n(b, a), y)).

In order to prove that θ(a, b) = Ψ, it is enough to show that Ψ is a congruence
on A, (a, b) ∈ Ψ and Ψ ⊆ θ(a, b). We set a′ := n(a, b) and b′ := n(b, a). Assume
that (x, y), (u, v) ∈ Ψ. Then

n(a′, n(b′, x)) = n(a′, n(b′, y)) and n(a′, n(b′, u)) = n(a′, n(b′, v)). (5.1)

The arguments to prove that (x ∨ u, y ∨ v) ∈ Ψ and (n(x, u), n(y, v)) ∈ Ψ are
similar, so we only show the first statement and leave the details of the last
one to the reader. We need to check that n(a′, n(b′, x∨u)) = n(a′, n(b′, y ∨v)).
Suppose, towards a contradiction, that n(a′, n(b′, x ∨ u)) � n(a′, n(b′, y ∨ v)).
Thus, by Proposition 2.5, there exists a prime filter P such that n(a′, n(b′, x ∨
u)) ∈ P and n(a′, n(b′, y ∨ v)) /∈ P . Now, by Proposition 4.4, there exists a
prime filter P1 such that P ⊆ P1, a′ ∈ P1 and n(b′, y∨v) /∈ P1. By Proposition
4.4 again, there exists a prime filter P2 such that P1 ⊆ P2, b′ ∈ P2 and y ∨ v /∈
P2. So y, v /∈ P2. Then, we have n(a′, n(b′, x∨u)) ∈ P2, a′, b′ ∈ P2 and y, v /∈ P2.
Now, applying Lemma 5.4 twice, we obtain x ∨ u ∈ P2. Since P2 is prime, it
follows that x ∈ P2 or u ∈ P2. Suppose that x ∈ P2. By (NH1), n(b′, x) ∈ P2

and then n(a′, n(b′, x)) ∈ P2. Thus, by (5.1), n(a′, n(b′, y)) ∈ P2. Then, by
applying Lemma 5.4 again twice we obtain y ∈ P2, which is a contradiction.
Analogously, if u ∈ P2. Hence n(a′, n(b′, x ∨ u)) ≤ n(a′, n(b′, y ∨ v)). In a
similar way, we obtain the inverse inequality and thus n(a′, n(b′, x ∨ u)) =
n(a′, n(b′, y ∨ v)). Hence (x ∨ u, y ∨ v) ∈ Ψ.

Now, suppose that x ∧ u and y ∧ v exist in A. Then, by Proposition 5.5,
it follows that n(a′, n(b′, x ∧ u)) = n(a′, n(b′, y ∧ v)). Hence (x ∧ u, y ∧ v) ∈ Ψ.
Therefore, we have proved that Ψ is a congruence on 〈A,m, n, 1〉.

Now let us prove that (a, b) ∈ Ψ. Suppose, towards a contradiction, that

n(n(a, b), n(n(b, a), a)) � n(n(a, b), n(n(b, a), b)).

Thus, there is a prime filter P such that n(n(a, b), n(n(b, a), a)) ∈ P and
n(n(a, b), n(n(b, a), b)) /∈ P . Then, by applying Proposition 4.4 twice, there
exists a prime filter Q such that n(n(a, b), n(n(b, a), a)) ∈ Q, n(a, b), n(b, a) ∈ Q
and b /∈ Q. Thus, n(n(b, a), a) ∈ Q and then a ∈ Q. So, since a, n(a, b) ∈ Q, it
follows that b ∈ Q, which is a contradiction. Hence

n(n(a, b), n(n(b, a), a)) ≤ n(n(a, b), n(n(b, a), b)).

In a similar way, we get the inverse inequality. Then

n(n(a, b), n(n(b, a), a)) = n(n(a, b), n(n(b, a), b)).

Therefore, (a, b) ∈ Ψ.
Finally, we show Ψ ⊆ θ(a, b). Let (x, y) ∈ Ψ. So n(a′, n(b′, x)) =

n(a′, n(b′, y)). We set θ := θ(a, b). Since a θ b, it follows that n(a, a) θ n(a, b).
By (NH2), 1 θ n(a, b). Analogously, 1 θ n(b, a). Thus n(1, y) θ n(n(b, a), y). By
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(NH3), we obtain that y θ n(n(b, a), y). Similarly, we have x θ n(n(b, a), x).
Since 1 θ n(a, b), it follows that

n(1, n(n(b, a), x)) θ n(n(a, b), n(n(b, a), x)).

By axiom (NH3), it follows that

n(n(b, a), x) θ n(n(a, b), n(n(b, a), x))

and thus x θ n(a′, n(b′, x)). Similarly, we get y θ n(a′, n(b′, y)). Thus, x θ y.
Hence Ψ ⊆ θ(a, b). This completes the proof. �

Corollary 5.7. The variety NHA has equationally definable principal congru-
ences.

Corollary 5.8. The variety NHA has the congruence extension property.
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[4] Calomino, I.: Supremo álgebra distributivas: una generalización de las álgebra
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