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Abstract

Our main goal is to develop a representation for finite distributive nearlattices through cer-

tain ordered structures. This representation generalizes the well-known representation given

by Birkhoff for finite distributive lattices through finite posets. We also study finite dis-

tributive nearlattices through the concepts of dual atoms, boolean elements, complemented

elements and irreducible elements. We prove that the sets of boolean elements and comple-

mented elements form semi-boolean algebras. We show that the set of boolean elements of

a finite distributive lattice is a boolean lattice.
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1. Introduction and preliminaries

It is well known that the class of distributive lattices have many and important appli-

cations, especially in logic and computer science. Thus, it is also important to study some

natural generalizations of distributive lattices which may result interesting. An important

class of distributive lattices for computer science is the class of finite distributive lattices.

This paper deals with the concept of finite distributive nearlattice, which is a natural and

nice generalization of finite distributive lattice.

Distributive nearlattices were study from different points of view: algebraic, topological

and logical [15, 21, 14, 2, 7, 11, 19, 8, 12, 6, 9, 10, 17, 18].
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In Section 2 we consider the notions of dual atom and boolean element. We prove that

the boolean elements form a semi-boolean algebra ([1]). In Section 3 we show that the semi-

boolean algebra of boolean elements of a finite distributive nearlattice A is a homomorphic

image of A. We generalize the concept of complement elements from distributive lattice to

distributive nearlattice and, we show that the set of complement elements of a distributive

nearlattice is a semi-boolean algebra. Section 4 is concerned with the free distributive lattice

extension of a distributive nearlattice ([11]). Finally, in Section 5 we develop a discrete

representation for the class of finite distributive nearlattice, which is a generalization of the

well-known representation for finite distributive lattice given by Birkhoff [4].

We assume that the reader is familiar with the theory of ordered sets and lattices. Our

main references for Order and Lattice theory are [16, 20, 3]. Now we introduce the notational

conventions that we use throughout the paper.

Let P = ⟨P,≤⟩ be a poset. A subset U ⊆ P is said to be an upset when for all a, b ∈ P ,

if a ≤ b and a ∈ U , then b ∈ U . Dually we have the notion of downset. Given an element

a ∈ P , the principal upset generated by a is [a) := {x ∈ P : a ≤ x}. Dually we have the

principal downset (a]. Given a subset Q of P and a ∈ P , [a)Q := {x ∈ Q : a ≤ x}.

Definition 1.1 ([15]). A distributive nearlattice is a join-semilattice A = ⟨A,∨, 1⟩ with top

element 1 such that for all a ∈ A, the principal upset [a) is a bounded distributive lattice

(with respect to the induced order).

Let A = ⟨A,∨, 1⟩ be a distributive nearlattice. For each a ∈ A, we denote the meet in

[a) by ∧a. It should be noted that for all x, y ∈ A, the meet x ∧ y exists in A if and only

if x, y have a common lower bound in A. Thus, for all x, y ∈ [a), the meet of x, y in [a)

coincides with their meet in A, that is, x ∧a y = x ∧ y. This should be kept in mind since

we will use it without mention. A subset F ⊆ A is called filter if (i) 1 ∈ F ; (ii) F is an

upset; and (iii) if a, b ∈ F and a∧ b exists in A, then a∧ b ∈ F . Let us denote by Fi(A) the

collection of all filters of A. It is straightforward that Fi(A) is a closure system. For X ⊆ A,

we denote by FigA(X) the filter generated by X. Thus, we have that ⟨Fi(A),∩,⊻, {1}, A⟩
is a distributive lattice where F ⊻G = FigA(F ∪G), for all F,G ∈ Fi(A).

A non-empty subset I ⊆ A is said to be an ideal when (i) I is a downset; (ii) if a, b ∈ I,

then a ∨ b ∈ I. A proper ideal I of A is called prime when for all a, b ∈ A, if a ∧ b exists

and a ∧ b ∈ I, then a ∈ I or b ∈ I.

Theorem 1.2 ([21]). Let A be a distributive nearlattice. If I is an ideal and F is a filter

of A such that I ∩ F = ∅, then there exists a prime filter P of A such that I ⊆ P and

P ∩ F = ∅.
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Given two distributive nearlattices A1 and A2, a map f : A1 → A2 is said to be an N-

homomorphism if f(1) = 1; for all a, b ∈ A1, f(a∨b) = f(a)∨f(b), and f(a∧b) = f(a)∧f(b),
whenever a ∧ b exists in A1.

The reader is referred to [13, 15, 5] for further information about distributive nearlattices.

2. Dual atoms and boolean elements

Definition 2.1. Let A be a distributive nearlattice and a ∈ A. We will say that a is a dual

atom if a ̸= 1 and for each x ∈ A, a ≤ x ≤ 1 implies x = a or x = 1. We say that a is a

boolean element if the principal filter [a) is a boolean lattice.

Let us denote by Atd(A) and Bo(A) the collections of all dual atoms of A and of all

boolean elements of A, respectively. It follows that Atd(A) ⊆ Bo(A). If a ∈ Bo(A) and

x ∈ [a), we shall denote the complement of x in [a) by ¬ax. The next properties will be

used throughout the paper without mention.

Remark 2.2. Let a ∈ Atd(A). Then, for all x ∈ A, we have that x ≤ a or x ∨ a = 1.

Moreover, if A is a finite distributive nearlattice, then for every x < 1, there exists a ∈
Atd(A) such that x ≤ a.

Proposition 2.3. Let A be a distributive nearlattice. Let a1, . . . , an ∈ Atd(A) be such that

a1 ∧ · · · ∧ an exists in A. Then a1 ∧ · · · ∧ an ∈ Bo(A).

Proof. Let a∗ = a1 ∧ · · · ∧ an. Since ⟨[a∗),∧a∗ ,∨, a∗, 1⟩ is a bounded distributive lattice, it

only remains to verify that each element of [a∗) has a complement. For each ai, let us denote

the complement of an element x ∈ [ai) by ¬ix. That is, for every x ∈ [ai), ¬ix ∈ [ai) such

that x ∧ai ¬ix = ai and x ∨ ¬ix = 1.

Let x ∈ [a∗). Thus x = (a1 ∨ x) ∧ · · · ∧ (an ∨ x). We define the element ¬x :=

¬1(a1 ∨ x) ∧ · · · ∧ ¬n(an ∨ x) (notice that the last meet exists because a∗ ≤ ai ≤ ¬i(ai ∨ x),

for all i). It is clear that ¬x ∈ [a∗). A straightforward computation shows that ¬x is

the complement of x in [a∗). Therefore, ⟨[a∗),∧a∗ ,∨, a∗, 1⟩ is a boolean lattice, and thus

a∗ = a1 ∧ · · · ∧ an ∈ Bo(A).

Let A be a distributive nearlattice and a ∈ A. We define the following set:

Xa := {x ∈ Atd(A) : a ≤ x}.

Thus, Xa = Atd(A) ∩ [a) = Atd([a)). If A is finite and a ∈ Bo(A), then since [a) is a finite

boolean lattice it follows that

a =
∧

Xa.
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Lemma 2.4. Let A be a distributive nearlattice and a, b ∈ A. Then Xa∨b = Xa ∩ Xb. If

a ∧ b exists, then Xa∧b = Xa ∪Xb.

Proof. It is straightforward to show directly that Xa∨b = Xa ∩Xb.

It is clear that Xa ∪ Xb ⊆ Xa∧b. Let now x ∈ Xa∧b. Since a ∧ b ≤ x, we have that

x = (a ∨ x) ∧ (b ∨ x). Given that x ∈ Atd(A), it follows that (a ≤ x or a ∨ x = 1) and

(b ≤ x or b∨x = 1). If a∨x = 1 and b∨x = 1, then x = 1, which is a contradiction. Hence,

a ≤ x or b ≤ x. That is, x ∈ Xa ∪Xb. Therefore Xa∧b ⊆ Xa ∪Xb.

Proposition 2.5. Let A = ⟨A,∨, 1⟩ be a finite distributive nearlattice. Then ⟨Bo(A),∨, 1⟩
is a nearlattice subalgebra of A.

Proof. We need to prove that Bo(A) is closed under ∨, and if a, b ∈ Bo(A) are such that

a ∧ b exists in A, then a ∧ b ∈ Bo(A).

Let a, b ∈ Bo(A). Notice that a ∨ b ≤
∧
Xa∨b, and since a, b ∈ Bo(A), it follows that

a =
∧

Xa and b =
∧

Xb. By Proposition 2.3, we have
∧
Xa∨b ∈ Bo(A). Let us show that

a ∨ b =
∧

Xa∨b. Suppose, towards a contradiction, that a ∨ b ̸=
∧
Xa∨b. So

∧
Xa∨b ≰ a ∨ b.

Then, there is a prime ideal P such that a ∨ b ∈ P and
∧
Xa∨b /∈ P . Thus, a, b ∈ P and

P ∩Xa∨b = ∅. Since
∧

Xa ∈ P ,
∧

Xb ∈ P and P is prime, it follows that there is xa ∈ Xa

such that xa ∈ P and there is xb ∈ Xb such that xb ∈ P . Since xa and xb are dual atoms,

we have

xa ∨ xb =

1 if xa ̸= xb

xa = xb if xa = xb

Since P is proper and xa ∨ xb ∈ P , we have that xa = xb. Let x := xa = xb. Thus a∨ b ≤ x.

Then x ∈ Xa∨b ∩ P , which is a contradiction. Hence a ∨ b =
∧
Xa∨b ∈ Bo(A). Let now

a, b ∈ Bo(A) be such that a ∧ b exists in A. By Lemma 2.4, we have∧
Xa∧b =

∧
(Xa ∪Xb) =

∧
Xa ∧

∧
Xb = a ∧ b.

Then, it follows by Proposition 2.3 that a ∧ b =
∧
Xa∧b ∈ Bo(A). Therefore, Bo(A) is a

nearlattice subalgebra of A.

Proposition 2.6. Let A be a finite distributive nearlattice. Let a ∈ Bo(A) and b ∈ A. If

a ≤ b, then b ∈ Bo(A). That is, [a)Bo(A) = [a)A.

Proof. Let a ∈ Bo(A) and b ∈ A be such that a ≤ b. Since a is a boolean element, we have

a =
∧

Xa. We also have that b ≤
∧

Xb. Suppose that
∧
Xb ≰ b. Then, there is a prime
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ideal P such that b ∈ P and
∧

Xb /∈ P . Thus, a ∈ P and Xb ∩ P = ∅. Since
∧
Xa ∈ P and

P is prime, we obtain that there is x ∈ Xa∩P . Then, x /∈ Xb. Since x ∈ Atd(A) and b ≰ x,

it follows that b ∨ x = 1. This is a contradiction because b, x ∈ P and P is a proper ideal.

Hence b =
∧

Xb ∈ Bo(A).

A semi-boolean algebra ([1]) is a join-semilattice with a top element such that every

principal upset is a Boolean lattice. In [1] Abbot showed that the semi-boolean algebras

are in a one-to-one correspondence with the implication algebras (also known as Tarski

algebras).

Corollary 2.7. Let A = ⟨A,∨, 1⟩ be a finite distributive nearlattice. Then, the nearlattice

subalgebra ⟨Bo(A),∨, 1⟩ is a semi-boolean algebra.

Proof. Let a ∈ Bo(A). By Proposition 2.6, we have [a)Bo(A) = [a)A, and since Bo(A) is a

nearlattice subalgebra of A, it follows that [a)Bo(A) is a boolean lattice. Hence Bo(A) is a

semi-boolean algebra.

Proposition 2.8. Let A be a finite distributive nearlattice. The following are equivalent:

(1)
∧

Atd(A) exists in A;

(2) There is a ∈ A such that Bo(A) = [a);

(3) Bo(A) is a boolean lattice.

Proof. (1) ⇒ (2) Let a :=
∧

Atd(A). It follows by Proposition 2.3 that a ∈ Bo(A). Let

b ∈ Bo(A). Then, a =
∧

Atd(A) ≤
∧
Xb = b. Thus b ∈ [a). Hence Bo(A) ⊆ [a). Now, by

Proposition 2.6, we have [a) = [a)Bo(A) ⊆ Bo(A). Therefore, Bo(A) = [a).

(2) ⇒ (3) It follows straightforward by Corollary 2.7.

(3) ⇒ (1) Let a ∈ A be the least element of Bo(A). Thus [a) = [a)Bo(A) = Bo(A). Since

Atd(A) ⊆ Bo(A) = [a), we obtain that
∧
Atd(A) exists in A.

3. Annihilators

Let A = ⟨A,∨, 1⟩ be a distributive nearlattice. For every a ∈ A, let a⊤ = {x ∈ A :

a ∨ x = 1} (see [7, 14]). It follows that a⊤ ∈ Fi(A), for all a ∈ A. We will say that an

element a ∈ A is dense if a⊤ = {1}. Denote by D(A) the set of all dense elements of A.

Proposition 3.1. Let A be a finite distributive nearlattice. The following are equivalent:
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(1)
∧

Atd(A) exists in A;

(2) There is a ∈ A such that D(A) = (a];

(3) D(A) is not empty.

Proof. (1) ⇒ (2) Let a :=
∧

Atd(A). Let x ∈ a⊤. So x ∨ a = 1. Suppose that x < 1. Then,

there is b ∈ Atd(A) such that x ≤ b. Thus b = b ∨ a = 1, which is a contradiction. Hence

x = 1. It follows that a⊤ = {1}, and thus a ∈ D(A). We obtain that (a] ⊆ D(A). Let now

b ∈ D(A). So b⊤ = {1}. Let x ∈ Atd(A). Since x /∈ b⊤, we have b ∨ x ̸= 1. Thus b ≤ x.

Then b ≤
∧

Atd(A) = a. Hence b ∈ (a]. Therefore, D(A) ⊆ (a].

(2) ⇒ (3) It is immediate.

(3) ⇒ (1) Let us show that Atd(A) has a lower bound. As D(A) ̸= ∅, there is a ∈ A

such that a⊤ = {1}. Let x ∈ Atd(A) and suppose that a ≰ x. Thus, x ∨ a = 1. Then

x ∈ a⊤ = {1}, which is a contradiction because x ∈ Atd(A). Hence a ≤ x, for all x ∈ Atd(A).

Therefore,
∧

Atd(A) exists in A.

Proposition 3.2. Let A be a finite distributive nearlattice. The following properties are

satisfied:

1. Let a, b ∈ Bo(A). Then, a ≤ b if and only if a⊤ ⊆ b⊤.

2. For each a ∈ A, we have a⊤ = (
∧
Xa)

⊤.

Proof. (1) It is easy to show that a ≤ b implies a⊤ ⊆ b⊤. Conversely, assume that a⊤ ⊆ b⊤.

Let x ∈ Xb. Then x ∈ Atd(A) and b ∨ x = x ̸= 1, i.e., x /∈ b⊤. So, x /∈ a⊤. Since

a ∨ x ̸= 1 and x is dual atom, we have a ≤ x. Thus x ∈ Xa. Thus Xb ⊆ Xa. Therefore,

a =
∧

Xa ≤
∧

Xb = b.

(2) Let a ∈ A and b :=
∧

Xa. By Proposition 2.3, b ∈ Bo(A). Since a ≤ b we have

a⊤ ⊆ b⊤. Let x ∈ b⊤. Thus,

1 = b ∨ x =
(∧

Xa

)
∨ x =

∧
{y ∨ x : y ∈ Xa}.

Then y ∨ x = 1, for all y ∈ Xa. Suppose that a ∨ x < 1. So, there exists y ∈ Atd(A) such

that a ∨ x ≤ y < 1. Thus a ≤ y and x ≤ y. It follows that y ∈ Xa. Then y = y ∨ x = 1,

which is a contradiction. Hence, a ∨ x = 1. Thus x ∈ a⊤. Then, we obtain that b⊤ ⊆ a⊤.

Therefore, a⊤ = b⊤ = (
∧

Xa)
⊤.
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Given a finite distributive nearlattice A we define the map πA : A → Bo(A) as follows:

for every a ∈ A,

πA(a) =
∧

Xa.

From Proposition 2.3, it follows that πA is well defined.

Remark 3.3. Notice that a ≤ πA(a), for all a ∈ A. Moreover, for each a ∈ A, πA(a) is

the least boolean element b such that a ≤ b. Thus, we also have that πA(a) = a, for all

a ∈ Bo(A).

Proposition 3.4. Let A be a finite distributive nearlattice. Then, the map πA : A → Bo(A)

is an onto N-homomorphism.

Proof. Let a, b ∈ A. By definition and Lemma 2.4, we have πA(a ∨ b) =
∧
Xa∨b =∧

(Xa ∩Xb). Since Xa ∩ Xb ⊆ Xa, Xb, it follows that πA(a) ∨ πA(b) ≤ πA(a ∨ b). By

Remark 3.3, we have a ≤ πA(a) and b ≤ πA(b). Thus a ∨ b ≤ πA(a) ∨ πA(b). Then, since

πA(a)∨πA(b) is a boolean element, it follows by Remark 3.3 that πA(a∨ b) ≤ πA(a)∨πA(b).

Therefore, πA(a ∨ b) = πA(a) ∨ πA(b).

Now assume that a ∧ b exists in A. Then,

πA(a ∧ b) =
∧

Xa∧b =
∧

(Xa ∪Xb) =
∧

Xa ∧
∧

Xb = πA(a) ∧ πA(b).

Finally, πA(1) =
∧

X1 =
∧

∅ = 1.

It is well known that if L is a bounded distributive lattice, then the subset Comp(L)

of all complemented elements of L form a boolean algebra. Given that in a distributive

nearlattice may not exists the least element, we generalize the concept of complemented

element as follows. Recall that ⊻ denotes the supremum in Fi(A) and a⊤ ∈ Fi(A), for all

a ∈ A.

Definition 3.5. Let A be a distributive nearlattice. An element a ∈ A is said to be

complemented if [a) ⊻ a⊤ = A.

We denote by C(A) the set of all complemented elements of A.

Proposition 3.6. If A is a bounded distributive lattice, then Comp(A) = C(A).

Proof. Let a ∈ C(A). So [a) ⊻ a⊤ = A. Let 0 be the least element of A. Since 0 ∈ [a) ⊻ a⊤,

there is b ∈ a⊤ such that a ∧ b = 0. Thus, we have a ∨ b = 1 and a ∧ b = 0. Then, b is the

complement of a in A. Hence a ∈ Comp(A).
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Let now a ∈ Comp(A). Let a∗ ∈ A be the complement of a. Thus a ∧ a∗ = 0 and

a ∨ a∗ = 1. Let x ∈ A. Then (a ∨ x) ∧ (a∗ ∨ x) = (a ∧ a∗) ∨ x = x. Since x ∨ a ∈ [a) and

a∗ ∨ x ∈ a⊤, it follows that x ∈ [a) ⊻ a⊤. Hence [a) ⊻ a⊤ = A. Therefore, a ∈ C(A).

Proposition 3.7. Let A = ⟨A,∨, 1⟩ be a distributive nearlattice. Then ⟨C(A),∨, 1⟩ is a

nearlattice subalgebra of A.

Proof. Let a, b ∈ C(A). Thus [a) ⊻ a⊤ = [b) ⊻ b⊤ = A. Then,

[a ∨ b) ⊻ (a ∨ b)⊤ = ([a) ∩ [b)) ⊻ (a ∨ b)⊤ =
(
[a) ⊻ (a ∨ b)⊤

)
∩
(
[b) ⊻ (a ∨ b)⊤

)
.

Since a ≤ a ∨ b, we have a⊤ ⊆ (a ∨ b)⊤. Thus A = [a) ⊻ a⊤ ⊆ [a) ⊻ (a ∨ b)⊤. Then

A = [a)⊻ (a∨ b)⊤. Analogously, we have A = [b)⊻ (a∨ b)⊤. It follows [a∨ b)⊻ (a∨ b)⊤ = A.

Hence, a ∨ b ∈ C(A).

Assume now that a ∧ b exists in A. Then,

[a ∧ b) ⊻ (a ∧ b)⊤ = ([a) ⊻ [b)) ⊻
(
a⊤ ∩ b⊤

)
=

(
[a) ⊻ [b) ⊻ a⊤

)
∩
(
[a) ⊻ [b) ⊻ b⊤

)
= A.

Hence a ∧ b ∈ C(A). Therefore, ⟨C(A),∨, 1⟩ is a nearlattice subalgebra of A.

Proposition 3.8. Let A = ⟨A,∨, 1⟩ be a distributive nearlattice. Then ⟨C(A),∨, 1⟩ is a

semi-boolean algebra.

Proof. By the previous proposition we know that ⟨C(A),∨, 1⟩ is a distributive nearlattice.

Thus, [a)C(A) is a bounded distributive lattice, for all a ∈ C(A). Let a ∈ C(A). Let us show

that each element of the lattice [a)C(A) has a complement. Let b ∈ [a)C(A). So a ≤ b and

b ∈ C(A). Then [b) ⊻ b⊤ = A. Given that a ∈ [b) ⊻ b⊤, there exist x ∈ [b) and y ∈ b⊤ such

that a = x ∧ y. Thus a ≤ y and y ∨ b = 1. Notice that a ≤ b, y. Then a ≤ b ∧ y. Since

b ≤ x, it follows that b ∧ y ≤ x ∧ y = a. Hence a = b ∧ y. Now we show that y ∈ C(A).

Since a = b ∧ y, we obtain that [a) = [b) ⊻ [y) and a⊤ = b⊤ ∩ y⊤. Moreover, since b ∈ y⊤, it

follows that [b) ⊆ y⊤. Then, we have

A = [a) ⊻ a⊤ = ([b) ⊻ [y)) ⊻
(
b⊤ ∩ y⊤

)
=

(
[b) ⊻ [y) ⊻ b⊤

)
∩
(
[b) ⊻ [y) ⊻ y⊤

)
= [y) ⊻ y⊤.

Hence, we obtain that y ∈ [a)C(A), b∨ y = 1 and b∧ y = a. That is, y is the complement of b

in [a)C(A). Then [a)C(A) is a boolean algebra. Therefore, C(A) is a semi-boolean algebra.
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Proposition 3.9. Let A be a finite distributive nearlattice. Then, A is a semi-boolean

algebra if and only if Bo(A) = C(A).

Proof. Assume that A is a semi-boolean algebra. Then, A = Bo(A) and A = C(A) (see

[6]). Hence Bo(A) = C(A). Conversely, assume that Bo(A) = C(A). Let a ∈ A. Then,

by Proposition 3.2, a⊤ = b⊤, where b =
∧
Xa. Thus, b ∈ Bo(A) = C(A) and a ≤ b. Then

A = [b) ⊻ b⊤ ⊆ [a) ⊻ b⊤ = [a) ⊻ a⊤. Thus a ∈ C(A). Hence A = C(A). Therefore, A is a

semi-boolean algebra.

4. Connection with the free distributive lattice extension

Definition 4.1. Let A be a distributive nearlattice. A pair ⟨L(A), e⟩, where L(A) is a

bounded distributive lattice and e : A → L(A) is an N-embedding, is said to be a free dis-

tributive lattice extension of A if e[A] is finitely meet-dense in L(A) and the following uni-

versal property holds: for every bounded distributive lattice M and every N-homomorphism

h : A → M , there exists a unique lattice homomorphism ĥ : L(A) → M such that h = ĥ ◦ e.

Lemma 4.2. Let A be a distributive nearlattice and let ⟨L(A), e⟩ be the free distributive

lattice extension of A. The following properties are satisfied: for each a ∈ A,

(1) e [[a)] = [e(a)).

(2) FigL(A)

(
e
[
a⊤

])
= e(a)⊤.

Proof. Let a ∈ A. (1) It is clear that e [[a)] ⊆ [e(a)). Conversely, if u ∈ [e(a)), then

e(a) ≤ u. Since e[A] is finitely meet-dense in L(A), there exist x1, . . . , xn ∈ A such that

u = e(x1) ∧ . . . ∧ e(xn). Then e(a) ≤ e(xi), for all i ∈ {1, . . . , n}. Since e is injective, we

have a ≤ xi, ∀i ∈ {1, . . . , n}. Then, there exists y := x1 ∧ . . . ∧ xn ∈ [a) such that e(y) = u.

Hence u ∈ e [[a)]. Therefore, e [[a)] = [e(a)).

(2) We know that e(a)⊤ is a filter of L(A), and it is clear that e
[
a⊤

]
⊆ e(a)⊤. Then, we

have FigL(A)

(
e
[
a⊤

])
⊆ e(a)⊤. Let now u ∈ e(a)⊤. So u∨e(a) = 1L(A). Let a1, . . . , an ∈ A be

such that u = e(a1)∧· · ·∧e(an). Thus 1L(A) = u∨e(a) = (e(a1)∨e(a))∧· · ·∧ (e(an)∨e(a)).

Then 1L(A) = e(ai ∨ a) for all i. Hence ai ∨ a = 1 for all i. That is, a1, . . . , an ∈ a⊤.

Thus, e(a1), . . . , e(an) ∈ e
[
a⊤

]
. Then u = e(a1) ∧ · · · ∧ e(an) ∈ FigL(A)

(
e
[
a⊤

])
. Hence,

FigL(A)

(
e
[
a⊤

])
= e(a)⊤.

Proposition 4.3. Let A be a finite distributive nearlattice and ⟨L(A), e⟩ its free distributive
nearlattice extension. Then,
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(1) e [Atd(A)] = Atd(L(A));

(2) e [Bo(A)] ⊆ Bo(L(A));

(3) e [C(A)] ⊆ Comp(L(A)).

Proof. (1) Let a ∈ Atd(A). Let u ∈ L(A) be such that e(a) ≤ u ≤ 1L(A) (recall that

1L(A) = e(1)). Thus, there are a1, . . . , an ∈ A such that u = e(a1) ∧ · · · ∧ e(an). Since

e(a) ≤ u ≤ e(ai) for all i, we obtain that a ≤ ai ≤ 1 for all i. Then, for every i, a = ai

or ai = 1. If ai = 1 for all i, then u = 1L(A). Otherwise, there is i ∈ {1, . . . , n} such that

ai = a. Thus, e(a) ≤ u ≤ e(ai) = e(a). Then u = e(a). Hence e(a) ∈ Atd(L(A)). Let now

u ∈ Atd(L(A)). There are a1, . . . , an ∈ A such that u = e(a1)∧ · · · ∧ e(an). Since u ̸= 1L(A),

it follows that there is i, such that ai ̸= 1. Then, since u ≤ e(ai) < 1L(A), we have u = e(ai).

Moreover, it is straightforward to show directly that ai ∈ Atd(A). Hence u ∈ e [Atd(A)].

(2) Let a ∈ Bo(A). It is clear that ⟨[e(a)),∧,∨, e(a), 1L(A)⟩ is a bounded distributive

sublattice of L(A). We need only to prove that every element of [e(a)) is complemented.

Recall that [e(a)) = e [[a)]. Thus, let e(x) ∈ [e(a)) with x ∈ [a). Since [a) is a boolean lattice,

there is ¬ax ∈ [a) such that x ∨ ¬ax = 1 and x ∧a ¬ax = a. Then 1L(A) = e (x ∨ ¬ax) =

e(x)∨ e (¬ax) and e(a) = e (x ∧a ¬ax) = e(x)∧ e (¬ax). Thus, e (¬ax) is the complement of

e(x) in [e(a)), i.e., e (¬ax) = ¬e(a)e(x). Therefore, e(a) ∈ Bo(L(A)).

(3) Let a ∈ C(A). So [a) ⊻ a⊤ = A. We need to prove that e(a) ∈ Comp(L(A)). From

Proposition 3.6, it is equivalent to show that [e(a)) ⊻ e(a)⊤ = L(A) (here ⊻ is the join of

Fi(L(A))). Since [a) ⊻ a⊤ = A, it follows that

FigL(A)

(
e
[
[a) ⊻ a⊤

])
= FigL(A) (e[A]) = L(A).

By [11, Thm. 3.3], we know that the map Φ: Fi(A) → Fi(L(A)) defined by Φ(F ) =

FigL(A) (e[F ]) for every F ∈ Fi(A), is a lattice isomorphism. Then,

FigL(A)

(
e
[
[a) ⊻ a⊤

])
= Φ

(
[a) ⊻ a⊤

)
= Φ([a)) ⊻ Φ

(
a⊤

)
= FigL(A) (e [[a)]) ⊻ FigL(A)

(
e
[
a⊤

])
= [e(a)) ⊻ FigL(A)

(
e
[
a⊤

])
.

Hence, by Lemma 4.2, we have

L(A) = FigL(A)

(
e
[
[a) ⊻ a⊤

])
= [e(a)) ⊻ e(a)⊤.
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Therefore, we have shown that e(a) ∈ C(L(A)).

Corollary 4.4. Let A be a finite distributive nearlattice and ⟨L(A), e⟩ its free distributive

lattice extension. Then πL(A) ◦ e = e ◦ πA, i.e., the following diagram commutes:

A
πA //

e

��

Bo(A)

e

��
L(A) πL(A)

// Bo (L(A))

Proof. Let a ∈ A. By Proposition 4.3, we obtain that

πL(A) (e(a)) =
∧

{z ∈ Atd(L(A)) : e(a) ≤ z}

=
∧

{e(x) : x ∈ Atd(A), e(a) ≤ e(x)}

= e
[∧

{x ∈ Atd(A) : a ≤ x}
]
= e (πA(a)) .

5. A discrete representation

In this section we develop a representation for the class of finite distributive nearlattices

through certain ordered structures. This representation is a nice generalization of that given

by Birkhoff for finite distributive lattice through finite posets ([4]).

Definition 5.1. Let A be a distributive nearlattice. An element a ∈ A is said to be meet-

irreducible (or simply irreducible) if for all x, y ∈ A such that x ∧ y exists in A, a = x ∧ y

implies a = x or a = y.

Let us denote by Irr(A) the set of all irreducible elements of A. Notice that Atd(A) ⊆
Irr(A). The following lemma is straightforward, and thus we omit its proof.

Lemma 5.2. Let A be a distributive nearlattice and a ∈ A. Then, a is irreducible if and

only if for all x, y ∈ A such that x ∧ y exists, x ∧ y ≤ a implies x ≤ a or y ≤ a.

Theorem 5.3. Let A be a finite distributive nearlattice. Then, for every a ∈ A,

a =
∧

{x ∈ Irr(A) : a ≤ x}.

Proof. Let S = {a ∈ A : a ̸=
∧
{x ∈ Irr(A) : a ≤ x}}. We suppose by contradiction that

S ̸= ∅. Then, since A is finite, S has a maximal element m. Thus m /∈ Irr(A). Then, there
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exist a, b ∈ A such that m = a∧ b, m < a and m < b. Since m is a maximal element of S, it

follows that a, b /∈ S. Thus a =
∧
{x ∈ Irr(A) : a ≤ x} and b =

∧
{Irr(A) : b ≤ x}. Hence,

by Lemma 5.2, we have

m =
(∧

{x ∈ Irr(A) : a ≤ x}
)
∧
(∧

{x ∈ Irr(A) : b ≤ x}
)

=
∧

{x ∈ Irr(A) : m ≤ x}.

Thus, we obtain that m /∈ S, which is a contradiction. Therefore, S = ∅.

Proposition 5.4. Let A be a finite distributive nearlattice and ⟨L(A), e⟩ its free distributive
lattice extension. Then, e [Irr(A)] = Irr(L(A)).

Proof. Let x ∈ Irr(A). Let u, v ∈ L(A) be such that e(x) = u∧v. There are a1, . . . , an, b1, . . . , bm ∈
A such that u = e(a1) ∧ · · · ∧ e(an) and v = e(b1) ∧ · · · ∧ e(bm). Thus, we have that

e(x) ≤ e(ai), e(bj), for all i = 1, . . . , n and j = 1, . . . ,m. Then x ≤ ai, bj, for all i, j, which

implies that there exists a1∧· · ·∧an∧b1∧· · ·∧bm. Then e(x) = e(a1∧· · ·∧an∧b1∧· · ·∧bm).

So x = a1 ∧ · · · ∧ an ∧ b1 ∧ · · · ∧ bm. Since x is irreducible, it follows that x = a1 ∧ · · · ∧ an or

x = b1∧· · ·∧bm. Then e(x) = u or e(x) = v. Hence e(x) ∈ Irr(L(A)). Therefore e [Irr(A)] ⊆
Irr(L(A)). Now it is straightforward to show the inclusion Irr(L(A)) ⊆ e [Irr(A)].

From now on, given a poset ⟨X,≤⟩, D(X) will denote the collection of all downsets of

X and let us consider the bounded distributive lattice ⟨D(X),∩,∪, ∅, X⟩.
Let A be a finite distributive nearlattice and ⟨L(A), e⟩ its free distributive lattice exten-

sion. Let us consider Irr(A) (Irr(L(A))) as a sub-poset of A (L(A)), that is, x ≤ y if and

only if x ∨ y = y, for all x, y ∈ Irr(A). Since L(A) is a finite distributive lattice, it follows

that the map α : L(A) → D(Irr(L(A))) defined by α(u) = {z ∈ Irr(L(A)) : u ≰ z} is an

isomorphism. Hence, by Proposition 5.4, we have that the map α̂ : L(A) → D(Irr(A)) given

by α̂(u) = {x ∈ Irr(A) : u ≰ e(x)} is an isomorphism. Therefore, we have the following.

Proposition 5.5. For every finite distributive nearlattice A, we have that ⟨D(Irr(A)), ê⟩
is the free distributive lattice extension of A, where ê : A → D(Irr(A)) is given by ê(a) =

(α̂ ◦ e)(a) = {x ∈ Irr(A) : a ≰ x}.

Definition 5.6. A DN-structure is a pair ⟨X, γ⟩ such that X is a poset and γ : D(X) →
{0, 1} is a map satisfying the following:

(S1) γ(X) = 1;
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(S2) γ([x)c) = 1, for all x ∈ X;

(S3) for all U, V ∈ D(X), U ⊆ V implies γ(U) ≤ γ(V ).

We say that a DN-structure ⟨X, γ⟩ is finite if the poset X is finite. Let ⟨X, γ⟩ be a

DN-structure. We define

N(X) := {U ∈ D(X) : γ(U) = 1}.

Proposition 5.7. Let ⟨X, γ⟩ be a finite DN-structure. Then ⟨N(X),∪, X⟩ is a distributive

nearlattice and ⟨X,≤⟩ ∼= ⟨Irr(N(X)),⊆⟩.

Proof. First let us show that N(X) is closed under ∪. Let U1, U2 ∈ N(X). Thus γ(U1) =

γ(U2) = 1. Then, since U1 ⊆ U1 ∪ U2, it follows by (S3) that γ(U1 ∪ U2) = 1. Hence

U1 ⊔ U2 ∈ N(X)

Now let U1, U2, V ∈ N(X) be such that V ⊆ U1, U2. Thus V ⊆ U1 ∩ U2. By (S3),

we have U1 ∩ U2 ∈ N(X). Then, U1 ∩ U2 is the meet of U1 and U2 in [V )N(X). Hence

⟨[V )N(X),∩,∪, U,X⟩ is a bounded distributive lattice. Therefore, ⟨N(X),∪, X⟩ is a dis-

tributive nearlattice.

It is well-known that Irr(D(X)) = {[x)c : x ∈ X}, and thus ⟨Irr(D(X)),⊆⟩ ∼= ⟨X,≤⟩.
Let us prove that Irr(N(X)) = Irr(D(X)). By (S2), we have Irr(D(X)) ⊆ Irr(N(X)). Let

now U ∈ Irr(N(X)). Since U c is a finite upset of X, we have that U c = [x1)∪ · · · ∪ [xn), for

some x1, . . . , xn ∈ U c. Thus U = [x1)
c ∩ · · · ∩ [xn)

c. Then, since U ∈ Irr(N(X), we obtain

that U = [xi)
c, for some i = 1, . . . , n. Hence Irr(N(X)) ⊆ Irr(D(X)). Therefore, we have

that ⟨Irr(N(X)),⊆⟩ ∼= ⟨X,≤⟩.

Let ⟨A,∨, 1⟩ be a finite distributive nearlattice. Let S(A) = ⟨Irr(A),≤⟩.

Proposition 5.8. Let ⟨A,∨, 1⟩ be a finite distributive nearlattice. Then, the pair ⟨S(A), γA⟩
is a DN-structure, where γA : D(S(A)) → {0, 1} is the map defined by γA(U) = 1 if and only

if
∧
(S(A) \ U) exists in A.

Proof. It is straightforward to show directly that the map γA satisfies conditions (S1)–

(S3).

Given a finite distributive nearlattice A, we have that ⟨N(S(A)),∪,S(A)⟩ is a finite

distributive nearlattice, where N(S(A)) = {U ∈ D(S(A)) : γA(U) = 1}.

Theorem 5.9 (Discrete representation). Let A = ⟨A,∨, 1⟩ be a finite distributive nearlat-

tice. Then, A ∼= N(S(A)).
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Proof. From Proposition 5.5, we have that the map ê : A → D(S(A)) is an N-embedding,

where ê(a) = {x ∈ Irr(A) : a ≰ x}, for every a ∈ A. Thus, A ∼= ê[A]. Let us show that

ê[A] = N(S(A)). Then,

U ∈ N(S(A)) ⇐⇒ U ∈ D(S(A)) and γA(U) = 1

⇐⇒ U ∈ D(S(A)) and
∧

S(A) \ U exists in A

⇐⇒ there exists a ∈ A such that U = {x ∈ Irr(A) : a ≰ x}

⇐⇒ there exists a ∈ A such that U = ê(a)

⇐⇒ U ∈ ê[A].

Hence, A ∼= ê[A] = N(S(A)).

Remark 5.10. Let A be a finite distributive nearlattice. If A is in fact a lattice, then it

follows that N(S(A)) = D(S(A)). Thus A ∼= D(S(A)). Moreover, it is clear that the finite

posets are in one-to-one correspondence with the DN-structures ⟨X, γ⟩ such that γ(U) = 1,

for all U ∈ D(X). Therefore, from the representation above established we can obtain the

representation given by Birkhoff for finite distributive lattices.

References

[1] J. Abbott. Semi-boolean algebra. Matematički Vesnik, 4(19):177–198, 1967.
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[14] I. Chajda and M. Kolař́ık. Ideals, congruences and annihilators on nearlattices. Acta Univ. Palacki.
Olomuc. Fac. rer. nat. Mathematica, 46(1):25–33, 2007.
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