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Abstract

The present article aims to develop a categorical duality for the category of finite distributive

join-semilattices and ∧-homomorphisms (maps that preserve the joins and the meets, when

they exist). This dual equivalence is a generalization of the famous categorical duality given

by Birkhoff for finite distributive lattices. Moreover, we show that every finite distributive

semilattice is a Hilbert algebra with supremum. We obtain some applications from the dual

equivalence. We provide a dual description of the 1-1 and onto ∧-homomorphisms, and we

obtain a dual characterization of some subalgebras. Finally, we present a representation for

the class of finite semi-boolean algebras.
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1. Introduction and preliminaries

A join-semilattice ⟨A,∨, 1⟩ is said to be distributive when for all a1, . . . , an, b ∈ A, if

the infimum a1 ∧ · · · ∧ an exists in A, then the infimum (a1 ∨ b) ∧ · · · ∧ (an ∨ b) exists in

A and (a1 ∨ b) ∧ · · · ∧ (an ∨ b) = (a1 ∧ · · · ∧ an) ∨ b. Distributive semilattices were first

studied by Balbes [3] under the name of prime semilattices. Then, such semilattices were

studied by Varlet [23] and Cornish and Hickman [12] under the name of weakly distributive

semilattices. See also [19, 20]. An interesting class of distributive join-semilattices are those

which satisfy the lower bound property, that is each finite non-empty subset which is bounded

below has an infimum. Distributive join-semilattices satisfying the lower bound property are

also known in the literature as distributive nearlattices, and they were studied from different
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points of view: algebraic, topological and logical, see [18, 11, 7, 5, 8, 14, 16, 9, 15, 6, 17].

The class of distributive join-semilattices satisfying the lower bound property (distributive

nearlattices) contains all distributive lattices, and also all those join-semilattices in which

every principal upset is a Boolean algebra. These semilattices are known as semi-boolean

algebras and were studied by Abbott in [2, 1]. Abbott proved ([2]) that semi-boolean algebras

are in a one-to-one correspondence with implication algebras. The class of implication

algebras corresponds to the equivalent algebraic semantics of the implicational fragment of

the classical propositional calculus.

In this paper, we focus on the class of finite distributive join-semilattices, which is a

natural generalization of the class of finite distributive lattices and contains all finite semi-

boolean algebras. In Section 2, it is shown that every element of a finite distributive join-

semilattice is the infimum of all meet-irreducible elements (see Definition 2.3) above it.

Then, we show that in every finite distributive join-semilattice a binary operation → can be

defined in such a way that the resulting algebra is a Hilbert algebra with supremum [13, 10].

Section 3 is dedicated to reviewing the set-theoretic representation for finite distributive

join-semilattices (finite distributive nearlattices) given in [17]. In Section 4, we extend the

representation given in the previous section to a full dual equivalence for the category of

finite distributive join-semilattices and ∧-homomorphisms. Section 5 is concerned with some

applications of the dual equivalence. We characterize the 1-1 and onto ∧-homomorphisms.

This leads to obtaining an effective method to produce subalgebras that are closed under

finite existent infimum. We also obtain a representation for the class of all finite semi-boolean

algebras.

We close this section by presenting some notations and basic definitions.

Let P be a poset. A subset X ⊆ P is called an upset of P when for every x ∈ X and

y ∈ P , if x ≤ y, then y ∈ X. Dually we have the notion of downset of P . For every subset

X ⊆ P , let

[X)P := {a ∈ P : ∃x ∈ X(x ≤ a)} and (X]P := {a ∈ P : ∃x ∈ X(a ≤ x)}.

Notice that for every x ∈ P we write [x)P := {a ∈ P : x ≤ a} and (x]P := {a ∈ P : a ≤ x}.
We also need the following notations. If Q ⊆ P and x ∈ P , then

[x)Q := {y ∈ Q : x ≤ y} and (x]Q := {y ∈ Q : y ≤ x}.

For us, semilattice will mean a join-semilattice with a top element ⟨A,∨, 1⟩. Thus, the

partial order ≤ associated with a semilattice ⟨A,∨, 1⟩ is given by: a ≤ b ⇐⇒ a ∨ b = b,
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for all a, b ∈ A. Then, a ∨ b is the supremum of a and b in A. Clearly, the infimum of two

elements of A does not necessarily exist in A. Throughout the paper, we write a1 ∧ · · · ∧ an

meaning that the infimum of a1, . . . , an exists and it is a1 ∧ · · · ∧ an.

Let A be a semilattice. A subset F ⊆ A is said to be a filter of A if (i) 1 ∈ F , (ii) F is

an upset of A, and (iii) if a, b ∈ F and a ∧ b exists in A, then a ∧ b ∈ F . Let us denote by

Fi(A) the collection of all filters of A. It is straightforward to check directly that Fi(A) is

an algebraic closure system, and thus Fi(A) is a complete lattice.

Definition 1.1. A semilattice A is said to be distributive when for all a1, . . . , an, b ∈ A,

if a1 ∧ · · · ∧ an exists in A, then (a1 ∨ b) ∧ · · · ∧ (an ∨ b) exists and (a1 ∧ · · · ∧ an) ∨ b =

(a1 ∨ b) ∧ · · · ∧ (an ∨ b).

Lemma 1.2 ([12]). A semilattice A is distributive if and only if the lattice Fi(A) is distribu-

tive.

Let A be a distributive semilattice andX ⊆ A. We denote by FigA(X) the filter generated

by X. Hence, by [12], we have that

FigA(X) = {a ∈ A : ∃a1, . . . , an ∈ [X) s.t. a = a1 ∧ · · · ∧ an}. (1.1)

Let A be a semilattice. A subset I ⊆ A is called an ideal of A if it is a downset of A and

for all a, b ∈ I, a ∨ b ∈ I1. For every subset X ⊆ A, the ideal generated by X is denoted by

IdgA(X) and IdgA(X) = {a ∈ A : a ≤ x1 ∨ · · · ∨ xn, for some x1, . . . , xn ∈ X}.
Let ⟨A,∨, 1⟩ and ⟨B,∨, 1⟩ be semilattices. A map h : A → B is said to be a homo-

morphism if h(1) = 1 and for all a, b ∈ A, h(a ∨ b) = h(a) ∨ h(b). We will say that h

is a ∧-homomorphism if it is a homomorphism and for all a, b ∈ A, if a ∧ b exists in A,

then h(a) ∧ h(b) exists in B and h(a ∧ b) = h(a) ∧ h(b). We will say that h : A → B is a

∧-embedding if it is a 1-1 ∧-homomorphism.

2. Finite distributive semilattices

A semilattice A is said to have the lower bound property if any two elements that are

bounded below have an infimum. Notice that a semilattice A has the lower bound property

if and only if for every a ∈ A, the principal upset [a) is a lattice. Hence, the following result

is straightforward.

1Notice that we are allowing that the empty set is an ideal.
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Lemma 2.1. Let A be a semilattice. The following are equivalent.

(i) A has the lower bound property and it is distributive.

(ii) For every a ∈ A, [a) is a distributive lattice.

The semilattices A satisfying the above condition (ii) are called distributive nearlattices.

By Lemma 2.1, we can apply all the results and facts known about distributive nearlattices

to distributive semilattices satisfying the lower bound property. The following proposition

is straightforward, but it will be important for us.

Proposition 2.2. Let A be a distributive semilattice. If A is finite, then A has the lower

bound property. Hence, A is a distributive nearlattice.

From now on, all semilattices will be finite.

Definition 2.3. Let A be a semilattice. An element m ∈ A is said to be meet-irreducible

(or simply irreducible) if m ̸= 1 and for all a1, a2 ∈ A, if a1∧ a2 exists and a1∧ a2 = m, then

a1 = m or a2 = m.

Let Irr(A) be the set of all irreducible elements of a semilattice A.

Lemma 2.4. Let A be a distributive semilattice. An element m ∈ A is irreducible if and

only if for all a1, a2 ∈ A, a1 ∧ a2 ≤ m implies that a1 ≤ m or a2 ≤ m.

The following proposition is fundamental for the representation given in the next section.

Proposition 2.5 ([17, Theo. 5.3]). Let A be a finite distributive semilattice. Then, for

every a ∈ A, we have

a =
∧

{m ∈ Irr(A) : a ≤ m}.

Remark 2.6. The above proposition tells us that every element is the infimum of the

irreducible elements above it. But, notice that not every subset of irreducible elements has

an infimum.

Now we will see that finite distributive semilattices are very closely related to finite

distributive lattices. Recall that every finite distributive lattice L is, in fact, a Heyting

algebra, where the Heyting implication is given by:

a → b =
∨

{x ∈ L : a ∧ x ≤ b}.
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Let ⟨A,∨, 1⟩ be a finite distributive semilattice and a ∈ A. We denote by ∧a the meet on

[a). Thus ⟨[a),∧a,∨, a, 1⟩ is a finite distributive lattice. Hence, [a) is a Heyting algebra,

where the Heyting implication →a on [a) is given by:

x →a y =
∨

{z ∈ [a) : x ∧a z ≤ y} (2.1)

for all x, y ∈ [a). Then, we can define a binary operation → on A as follows: for every

a, b ∈ A,

a → b := (a ∨ b) →b b (2.2)

Let us use the operation → to characterize the irreducible elements.

Proposition 2.7. Let A be a finite distributive semilattice. Let 1 ̸= m ∈ A. Then, m is

irreducible if and only if for every a ∈ A, a ≤ m or a → m = m.

Proof. Assume that m is irreducible, and let a ∈ A. Since [m) is a Heyting algebra and

m ∨ a ∈ [m), it follows that (m ∨ a) ∧ ((m ∨ a) →m m) = m. Then, since m is irreducible,

we have that m ∨ a = m or (m ∨ a) →m m = m. Hence a ≤ m or a → m = m.

Conversely, assume that for every a ∈ A, a ≤ m or a → m = m. Let a, b ∈ A

be such that a ∧ b exists and suppose that m = a ∧ b. Suppose by contradiction that

m < a and m < b. Then a → m = m and b → m = m. Given that a, b ∈ [m), we

obtain that a → m = a →m m and b → m = b →m m. Thus a →m m = m and

b →m m = m. Then, (a ∧ b) →m m = a →m (b →m m) = a →m m = m. Thus we have

1 = m →m m = (a ∧ b) →m m = m, which is a contradiction. Hence, m = a or m = b.

Therefore, m is irreducible.

Definition 2.8. Let A be a distributive semilattice. A pair ⟨LA, eA⟩, where LA is a bounded

distributive lattice and eA : A → LA is a ∧-embedding, is said to be a free distributive lattice

extension of A if e[A] is finitely meet-dense in LA and the following universal property

holds: for every bounded distributive lattice M and every ∧-homomorphism h : A → M ,

there exists a unique lattice homomorphism ĥ : LA → M such that h = ĥ ◦ eA.

In [12] it is shown that every distributive semilattice A has a free distributive lattice exten-

sion, and the finite meet-density implies that it is unique up to isomorphism.

The following proposition tells us how we can construct the free distributive lattice

extension of a finite distributive semilattice.

Proposition 2.9 ([17, Prop. 5.4]). Let A be a finite distributive semilattice and ⟨LA, eA⟩
its free distributive lattice extension. Then, e[Irr(A)] = Irr(LA).

5



Remark 2.10. Let A be a finite distributive semilattice. Then, its free distributive lattice

extension LA is finite. It is well-known that LA

D∼= Up(Irr(LA)) (where Up(X) denotes the

lattice of all upsets of a poset X). By the previous proposition we obtain that Irr(A) and

Irr(LA) are order-isomorphic. Hence, LA

D∼= Up(Irr(A)).

Notice that if A is a finite distributive semilattice, then its free distributive lattice exten-

sion LA is also finite. Thus LA is a Heyting algebra. Now we show that the ∧-embedding eA

preserves the operation on A defined by (2.2). This is made clear by the next proposition.

Proposition 2.11. Let A be a finite distributive semilattice and ⟨LA, eA⟩ its free distributive
lattice extension. Then, for all a, b ∈ A, eA(a → b) = eA(a) → eA(b).

Proof. Let a, b ∈ A. Since [b) is a Heyting algebra, it follows that (a∨ b)∧b ((a∨ b) →b b) =

(a∨b)∧b b. Thus we have (a∨b)∧(a → b) = b. Now, given that eA is a ∧-homomorphism, we

obtain that (eA(a)∨eA(b))∧eA(a → b) = eA(b). Then (eA(a)∧eA(a → b))∨ (eA(b)∧eA(a →
b)) = eA(b). Since b ≤ a → b, we have that (eA(a) ∧ eA(a → b)) ∨ eA(b) = eA(b). Hence,

eA(a) ∧ eA(a → b) ≤ eA(b).

Now we show that eA(a → b) is the greatest element in LA satisfying the above condition.

Let u ∈ LA be such that eA(a) ∧ u ≤ eA(b). We need to prove that u ≤ eA(a → b). By

Proposition 2.5, it is enough to prove that for every y ∈ Irr(LA), eA(a → b) ≤ y implies that

u ≤ y. Let x ∈ Irr(A) be such that eA(a → b) ≤ eA(x) (recall that eA[Irr(A)] = Irr(LA)).

On the one hand, notice that a → b = (a ∨ b) →b b =
∨
{c ∈ [b) : (a ∨ b) ∧b c ≤ b}. Thus

eA(a → b) =
∨
{eA(c) : c ∈ [b), (a ∨ b) ∧ c ≤ b}. Then, we have that eA(c) ≤ eA(x), for all

c ∈ [b) such that (a∨ b)∧ c ≤ b. On the other hand, since there are a1, . . . , an ∈ A such that

u = eA(a1) ∧ · · · ∧ eA(an) and since eA(a) ∧ u ≤ eA(b), it follows that

eA(b) = (eA(a) ∨ eA(b)) ∧ (u ∨ eA(b))

= eA(a ∨ b) ∧ [(eA(a1) ∨ eA(b)) ∧ · · · ∧ (eA(an) ∨ eA(b))]

= eA((a ∨ b) ∧ (a1 ∨ b) ∧ · · · ∧ (an ∨ b)).

Then b = (a∨ b)∧ (a1∨ b)∧ · · · ∧ (an∨ b). Let c := (a1∨ b)∧ · · · ∧ (an∨ b). Thus, c ∈ [b) and

(a∨b)∧c ≤ b. Hence eA(c) ≤ eA(x). That is, eA(a1∨b)∧· · ·∧eA(an∨b) ≤ eA(x). Since eA(x)

is irreducible, it follows that there is i ∈ {1, . . . , n} such that eA(ai) ≤ eA(ai ∨ b) ≤ eA(x).

Then, u ≤ eA(x). Hence u ≤ eA(a → b). Therefore, eA(a → b) = eA(a) → eA(b).
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Hilbert algebras with supremum correspond to the implication-disjunction subreducts

of Heyting algebras. For further reading on Hilbert algebras, see [13, 22], and on Hilbert

algebras with supremum, see [21, 10].

Corollary 2.12. Every finite distributive semilattice A is a Hilbert algebra with supremum,

with the implication defined by (2.2).

Proof. Let A be a finite distributive semilattice. Then, by Proposition 2.11, we have that the

algebra ⟨A,∨,→, 1⟩ is isomorphic to the implication-disjunction subreduct ⟨eA[A],∨,→, 1⟩
of the Heyting algebra LA. Hence, the algebra ⟨A,∨,→, 1⟩, with → defined by (2.2), is a

Hilbert algebra with supremum.

3. Representation

In this section, we present the representation for finite distributive semilattices given in

[17]. Recall that finite distributive semilattice is equivalent to finite distributive nearlattice,

as it was named in [17]. Also, we point out that in [17, Sec. 5] the authors worked with the

lattice of downsets, ordered by inclusion, of a poset. In the present article, we choose (as

will become clear in the following sections) to work dually with the lattice of upsets, ordered

by reverse inclusion. Thus, the results and the definitions given in [17] are dually presented

here.

From now on, given a poset X, let us consider the collection of all upsets of X, denoted

by Up(X), ordered by ⊇. Thus ⟨Up(X),⊓,⊔⟩ is a distributive lattice, where the meet ⊓ is

∪ and the join ⊔ is ∩. Then, for all U, V ∈ Up(X), we have U ⊑ V ⇐⇒ V ⊆ U . Notice

that Irr(Up(X)) = {[x)X : x ∈ X}. The next definition corresponds dually to the definition

of DN-structure given in [17, Def. 5.6].

Definition 3.1 ([17, Def. 5.6]). A DS-structure is a pair ⟨X, γ⟩ such that X is a poset and

γ : Up(X) → {0, 1} is a map satisfying the following:

(S1) γ(∅) = 1;

(S2) γ([x)) = 1, for all x ∈ X;

(S3) for all U, V ∈ Up(X), U ⊆ V implies γ(V ) ≤ γ(U).

We say that a DS-structure ⟨X, γ⟩ is finite if the poset X is finite.
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Let ⟨X, γ⟩ be a DS-structure. Let

A(X) := {U ∈ Up(X) : γ(U) = 1}.

Thus A(X) ⊆ Up(X), and by condition (S3), it follows that A(X) is closed under ⊔ = ∩.

Proposition 3.2 ([17, Prop. 5.7]). Let ⟨X, γ⟩ be a finite DS-structure. Then ⟨A(X),⊔, ∅⟩
is a finite distributive semilattice and ⟨Irr(A(X)),⊑⟩ ∼= ⟨X,≤⟩.

Remark 3.3. Let ⟨X, γ⟩ be a finite DS-structure. Let U, V ∈ A(X). If the infimum of U

and V exists in A(X), then it is U ∪ V . That is, U ⊓ V = U ∪ V ∈ A(X).

Now, let ⟨A,∨, 1⟩ be a finite distributive semilattice and let

X (A) := ⟨Irr(A), γA⟩

be the pair where Irr(A) is the sub-poset of irreducible elements of A and γA : Up(Irr(A)) →
{0, 1} is the map defined by:

γA(U) = 1 ⇐⇒
∧

U exists in A

for every U ∈ Up(Irr(A)).

Proposition 3.4 ([17, Prop. 5.8]). Let ⟨A,∨, 1⟩ be a finite distributive semilattice. Then,

X (A) = ⟨Irr(A), γA⟩ is a DS-structure.

Given a finite distributive semilattice A, we have that ⟨A(X (A)),⊔, ∅⟩ is a finite dis-

tributive semilattice, where A(X (A)) = {U ∈ Up(Irr(A)) : γA(U) = 1} and ⊔ = ∩.

Theorem 3.5 (Representation, [17, Theo. 5.9]). Let ⟨A,∨, 1⟩ be a finite distributive semi-

lattice. Then, the map αA : A → A(X (A)) defined by αA(a) = {x ∈ Irr(A) : a ≤ x} is an

isomorphism.

Roughly speaking, given a DS-structure ⟨X, γ⟩, X represents the poset of irreducible ele-

ments of the distributive semilattice A(X), and the map γ tells us which infima of irreducible

elements exist in A(X).

Example 3.6. Let A be the distributive semilattice given in Figure 1. Thus X := Irr(A) =

{x1, x2, x3, x4, x5}. Figure 1 shows the poset X partially ordered by the partial order induced

by A. Then,

A(X) = γ−1
A [{1}] = {∅} ∪ {[xi)X : i = 1, 2, 3, 4, 5} ∪ {[x3)X ∪ [x4)X , [x4)X ∪ [x5)X}.
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x1 x2

a b

x3 x4
x5

1

A

x1 x2

x3 x4 x5

X = Irr(A)

[x1)X [x2)X

[x3)X ∪ [x4)X [x4)X ∪ [x5)X

[x3)X [x4)X [x5)X

∅

A(X)

Figure 1:

Remark 3.7. Let A be a finite distributive lattice. Then, γA : Up(Irr(A)) → {0, 1} is such

that γA(U) = 1, for all U ∈ Up(Irr(A)). Then, A ∼= A(X (A)) = Up(Irr(A)). Thus, we

obtain the representation given by Birkhoff for finite distributive lattices [4].

4. Categorical duality

Now we proceed to extend the representation developed in the previous section to a

full categorical dual equivalence. Let us denote by DS f the category of finite distributive

semilattices and ∧-homomorphisms. We need to find the right morphisms between DS-

structures that correspond to the ∧-homomorphisms.

Definition 4.1. Let ⟨X, γ⟩ and ⟨Y, τ⟩ be DS-structures. We will say that f : ⟨X, γ⟩ → ⟨Y, τ⟩
is a DS-morphism if f : X → Y is a partial function satisfying the following conditions:

(M1) For all x1, x2 ∈ dom f , if x1 ≤ x2, then f(x1) ≤ f(x2);

(M2) dom f ∈ Up(X);

(M3) γ (f−1[V ]) = 1, for every V ∈ Up(Y ) such that τ(V ) = 1.
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Notice that if f : X → Y is a partial function satisfying conditions (M1) and (M2),

then f−1[V ] ∈ Up(X), for every V ∈ Up(Y ). Moreover, recall that given two partial

functions f : X → Y and g : Y → Z, the composition g ◦ f : X → Z is defined as follows:

dom(g ◦ f) = f−1[dom g] = {x ∈ X : x ∈ dom f and f(x) ∈ dom g}.
The proof of the following proposition is straightforward.

Proposition 4.2. If f : ⟨X, γ⟩ → ⟨Y, τ⟩ and g : ⟨Y, τ⟩ → ⟨Z, η⟩ are two DS-morphisms, then

the partial map g ◦ f : ⟨X, γ⟩ → ⟨Z, η⟩ is also a DS-morphism.

Now we are in a position to define the category S f of finite DS-structures and DS-

morphisms.

For what follows, we need the following notion and some results. A proper ideal I of A

is said to be prime if whenever a, b ∈ A are such that a ∧ b exists and a ∧ b ∈ I, then a ∈ I

or b ∈ I. Notice that if A is a finite semilattice, then all ideals of A are of the form (a], for

some a ∈ A.

Lemma 4.3. Let A be a finite distributive semilattice and P an ideal of A. Then, P is a

prime ideal if and only if there is x ∈ Irr(A) such that P = (x].2

Lemma 4.4 ([7]). Let A and B be finite distributive semilattices and let h : A → B be a

∧-homomorphism. Then, for every prime ideal P of B, h−1[P ] is a prime ideal of A.

Let h : A → B be a ∧-homomorphism between finite distributive semilattices. Let us

define the partial function fh : X (B) → X (A) as follows:

dom fh = {y ∈ Irr(B) : h−1[(y]B] ̸= ∅} and fh(y) =
∨

h−1[(y]B]

for every y ∈ dom fh. By Lemmas 4.3 and 4.4, it follows that fh is a well-defined partial

function.

Lemma 4.5. Let h : A → B be a ∧-homomorphism. Then, for every a ∈ A and y ∈ Irr(B),

we have

h(a) ≤ y ⇐⇒ y ∈ dom fh and a ≤ fh(y).

Proof. If h(a) ≤ y, then a ∈ h−1[(y]B]. Thus y ∈ dom fh and a ≤
∨
h−1[(y]] = fh(y).

Conversely, assume that y ∈ dom fh and a ≤ fh(y). Since h−1[(y]B] is an ideal of B and

since fh(y) =
∨

h−1[(y]] ∈ h−1[(y]], it follows that a ∈ h−1[(y]]. Hence, h(a) ≤ y.

2This result is a direct generalization from the lattice case, and it was proved by Dr. Ismael Calomino.
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Proposition 4.6. Let h : A → B be a ∧-homomorphism. Then the partial function fh : X (B) →
X (A) is a DS-morphism.

Proof. Condition (M1) is straightforward. In order to prove condition (M2), let y ∈ dom fh

and y′ ∈ Irr(B) be such that y ≤ y′. Thus, we have h−1[(y]B] ⊆ h−1[(y′]B]. Since y ∈ dom fh,

it follows that h−1[(y]B] ̸= ∅. Then, h−1[(y′]B] ̸= ∅. Thus y′ ∈ dom fh. Hence dom fh ∈
Up(Irr(B)). Now, to prove condition (M3), recall from Theorem 3.5 that

A(X (A)) = {U ∈ Up(Irr(A)) : γA(U) = 1} = {αA(a) : a ∈ A}

where αA(a) = {x ∈ Irr(A) : a ≤ x}. Thus, by Lemma 4.5, we have αB(h(a)) = f−1
h [αA(a)],

for every a ∈ A. Then, we obtain that

γB
(
f−1
h [αA(a)]

)
= γB (αB(h(a))) = 1

for every a ∈ A.

Now let f : ⟨X, γ⟩ → ⟨Y, τ⟩ be a DS-morphism. We define the map hf : A(Y ) → A(X)

as follows: hf (V ) := f−1[V ], for every V ∈ A(Y ).

Proposition 4.7. Let f : ⟨X, γ⟩ → ⟨Y, τ⟩ be a DS-morphism. Then, the map hf : A(Y ) →
A(X) is a ∧-homomorphism.

Proof. By condition (M3) we obtain that fh is well-defined. Let V1, V2 ∈ A(Y ). Then,

hf (V1 ⊔ V2) = f−1[V1 ∩ V2] = f−1[V1] ∩ f−1[V2] = hf (V1) ⊔ hf (V2).

Now suppose that there exists the infimum V1 ⊓ V2 in A(Y ). Recall that V1 ⊓ V2 = V1 ∪ V2.

Then, it is clear that hf (V1⊓V2) = hf (V1)⊓hf (V2). Moreover, we have hf (∅) = ∅. Therefore,
hf is a ∧-homomorphism.

Proposition 4.8. Let h : A → B and k : B → C be ∧-homomorphisms. Then, fk◦h = fh◦fk.

Proof. First, we need to show that dom fk◦h = dom (fh ◦ fk). Let z ∈ Irr(C). Then,

z ∈ dom (fh ◦ fk) ⇐⇒ z ∈ dom fk and fk(z) ∈ dom fh

⇐⇒ z ∈ dom fk and h−1[(fk(z)]B] ̸= ∅

⇐⇒ z ∈ dom fk and ∃a ∈ A s.t. h(a) ≤ fk(z)
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Lem.4.5⇐⇒ ∃a ∈ A s.t. k(h(a)) ≤ z

⇐⇒ (k ◦ h)−1[(z]C ] ̸= ∅

⇐⇒ z ∈ dom fk◦h.

Now let z ∈ dom fk◦h = dom (fh ◦ fk). For every a ∈ A, we have

a ∈ h−1[(fk(z)]B] ⇐⇒ h(a) ≤ fk(z)

⇐⇒ k(h(a)) ≤ z ⇐⇒ a ∈ (k ◦ h)−1[(z]C ].

Then h−1[(fk(z)]B] = (k ◦ h)−1[(z]C ]. Hence,

(fh ◦ fk)(z) = fh(fk(z)) =
∨

h−1[(fk(z)]B] =
∨

(k ◦ h)−1[(z]C ] = fk◦h(z).

Proposition 4.9. Let f : ⟨X, γ⟩ → ⟨Y, τ⟩ and g : ⟨Y, τ⟩ → ⟨Z, η⟩ be DS-morphisms. Then,

hg◦f = hf ◦ hg.

Proof. Let hg : A(Z) → A(Y ) and hf : A(Y ) → A(X) be the dual ∧-homomorphisms of g

and f , respectively. Let W ∈ A(Z). Then,

hg◦f (W ) = (g ◦ f)−1[W ] = f−1[g−1[W ]] = hf (hg(W )) = (hf ◦ hg)(W ).

Hence, hg◦f = hf ◦ hg.

Recall that a partial function f : X → Y is an isomorphism in the category of sets

and partial functions if and only if f is a bijective total function. Then, a DS-morphism

f : ⟨X, γ⟩ → ⟨Y, τ⟩ is an isomorphism in the category S f if and only if f : X → Y is an

order-isomorphism, and for every U ∈ Up(X), γ(U) = 1 ⇐⇒ τ(f [U ]) = 1.

Let ⟨X, γ⟩ be a DS-structure. Recall that A(X) = {U ∈ Up(X) : γ(U) = 1} and

X (A(X)) = ⟨Irr(A(X)), γA(X)⟩, where Irr(A(X)) = {[x)X : x ∈ X} and γA(X) : Up(Irr(A(X)) →
{0, 1}. We define the map θX : ⟨X, γ⟩ → X (A(X)), as follows: θX(x) = [x)X , for every

x ∈ X.

Proposition 4.10. Let ⟨X, γ⟩ be a DS-structure. Then, the function θX : ⟨X, γ⟩ → X (A(X))

is an isomorphism in S f .

Proof. It is straightforward by Proposition 3.2.
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Proposition 4.11. Let f : ⟨X, γ⟩ → ⟨Y, τ⟩ be a DS-morphism, and let h : A → B be a

∧-homomorphism. Then, the following diagrams

A B

A(X (A)) A(X (B))

h

hfh

αA αB

⟨X, γ⟩ ⟨Y, τ⟩

X (A(X)) X (A(Y ))

f

fhf

θX θY

commute.

Proof. Let a ∈ A. By Lemma 4.5, we have αB(h(a)) = f−1
h [αA(a)]. Then, (αB ◦ h)(a) =

αB(h(a)) = f−1
h [αA(a)] = hfh(αA(a)) = (hfh ◦ αA)(a).

In order to prove that the second diagram commutes, first we need to show that dom (fhf
◦

θX) = dom (θY ◦ f). Recall that hf : A(Y ) → A(X) is given by hf (V ) = f−1[V ], and

fhf
: X (A(X)) → X (A(Y )) is defined by dom fhf

= {[x) ∈ Irr(A(X)) : h−1
f [([x)]A(X)] ̸= ∅}

and fhf
([x)) =

∨
h−1
f [([x)]A(X)]. Then, on the one hand we obtain that

x ∈ dom (fhf
◦ θX) ⇐⇒ x ∈ θ−1

X [dom fhf
] ⇐⇒ [x)X ∈ dom fhf

⇐⇒ h−1
f [([x)]A(X)] ̸= ∅

⇐⇒ ∃V ∈ A(Y ) s.t. hf (V ) ∈ ([x)]A(X)

⇐⇒ ∃V ∈ A(Y ) s.t. hf (V ) ⊑ [x)

⇐⇒ ∃V ∈ A(Y ) s.t. [x) ⊆ f−1[V ]

⇐⇒ ∃V ∈ A(Y ) s.t. x ∈ dom f and f(x) ∈ V

⇐⇒ x ∈ dom f.

Thus, dom (fhf
◦ θX) = dom f . On the other hand,

x ∈ dom (θY ◦ f) ⇐⇒ x ∈ f−1[dom θY ] ⇐⇒ x ∈ f−1[Y ] ⇐⇒ x ∈ dom f.

Hence, dom (θY ◦ f) = dom f = dom (fhf
◦ θX). Now let x ∈ X and V ∈ A(Y ). Then,

V ∈ h−1
f [([x)]A(X)] ⇐⇒ hf (V ) ∈ ([x)]A(X)

⇐⇒ f−1[V ] ⊑ [x)X

⇐⇒ [x) ⊆ f−1[V ]

⇐⇒ x ∈ dom f and f(x) ∈ V

13



⇐⇒ [f(x))Y ⊆ V

⇐⇒ V ⊑ [f(x))Y .

Hence, we obtain that
∨

h−1
f [([x)]A(X)] = [f(x))Y . Therefore,

(fhf
◦ θX)(x) = fhf

([x)) =
∨

h−1
f [([x)]A(X)]

= [f(x))Y = θY (f(x)) = (θY ◦ f)(x).

Now we are ready to establish the main result of this section.

Theorem 4.12. The categories DS f and S f are dually equivalent.

Proof. Let Γ: DS f → S f be defined by: for every object A, Γ(A) = X (A), and for every

morphism h : A → B, Γ(h) = fh : X (B) → X (A). By Propositions 3.4, 4.6 and 4.8, Γ is a

well-defined contravariant functor. Let ∆: S f → DS f be defined by: for every object ⟨X, γ⟩,
∆(⟨X, γ⟩) = A(X), and for every morphism f : ⟨X, γ⟩ → ⟨Y, τ⟩, ∆(f) = hf : A(Y ) → A(X).

By Propositions 3.2, 4.7 and 4.9, we have that ∆ is a well-defined contravariant functor.

Finally, let α : 1DSf → ∆◦Γ given by: for every A ∈ DS f , α(A) = αA : A → (∆◦Γ)(A); and
let θ : 1Sf → Γ◦∆ be given by: for every ⟨X, γ⟩ ∈ S f , θ(X) = θX : ⟨X, γ⟩ → (Γ◦∆)(⟨X, γ⟩).
Then, from Theorem 3.5 and, by Propositions 4.10 and 4.11, we obtain that α and θ are

natural isomorphisms. Therefore, the categories DS f and S f are dually equivalent.

Remark 4.13. LetDLf be the category of finite distributive lattices and lattice-homomorphisms.

It is clear that DLf is a full subcategory of DS f . If we restrict the functor Γ to DLf , we

obtain that Γ: DLf → P is a dual equivalence, where P is the category of posets and

order-preserving maps.

5. Some applications of the dual equivalence between DSf and Sf

5.1. 1-1 and onto ∧-homomorphisms

In order to prove one of the main results of this subsection we need the following. Recall

that a proper ideal I of A is said to be prime if whenever a, b ∈ A are such that a∧ b exists

and a ∧ b ∈ I, then a ∈ I or b ∈ I.

Lemma 5.1 ([18]). Let A be a finite distributive semilattice. Let F be a filter and I a non-

empty ideal of A. If F ∩ I = ∅, then there exists a prime ideal P of A such that F ∩ P = ∅
and I ⊆ P .

14



Proposition 5.2. Let A and B be finite distributive semilattices and h : A → B a ∧-
homomorphism. Then h is 1-1 if and only if its dual DS-morphism fh : X (B) → X (A) is

an onto partial function.

Proof. Assume first that h is 1-1. Let x ∈ Irr(A). Let

F := FigB (h[(x]c]) and I := IdgB (h[(x]]) .

Suppose that F ∩ I ̸= ∅. So, there is b ∈ F ∩ I. On the one hand, by (1.1), there

are a1, . . . , an ∈ (x]c and b1, . . . , bn ∈ B such that for every i = 1, . . . , n, h(ai) ≤ bi and

b = b1∧· · ·∧bn. On the other hand, since b ∈ I, there is a ∈ (x] such that b ≤ h(a). For every

i = 1, . . . , n, we obtain that h(ai∨a) = h(ai)∨h(a) ≤ bi∨h(a). Let a′ := (a1∨a)∧· · ·∧(an∨a).
Since for every i = 1, . . . , n we have ai ∨ a ∈ (x]c, it follows that a′ ∈ (x]c. Now notice that

h(a′) = h(a1 ∨ a) ∧ · · · ∧ h(an ∨ a)

≤ (b1 ∨ h(a)) ∧ · · · ∧ (bn ∨ h(a))

= (b1 ∧ · · · ∧ bn) ∨ h(a) = h(a).

Then, since h is an embedding, we have that a′ ≤ a. Hence a′ ∈ (x], which is a contradiction.

Therefore, we conclude that F ∩ I = ∅. Then, by Lemma 5.1, there exists a prime ideal

P of B such that F ∩ P = ∅ and I ⊆ P . Now from Lemma 4.3, there is y ∈ Irr(B) such

that P = (y]. Thus h[(x]c] ∩ (y] = ∅ and h[(x]] ⊆ (y]. It follows that h−1[(y]] = (x]. Hence,

y ∈ dom fh and fh(y) =
∨

h−1[(y]] =
∨
(x] = x. Therefore, fh is onto.

Conversely, assume that the DS-morphism fh : X (B) → X (A) is onto. Let a, a′ ∈ A

be such that h(a) = h(a′). Let x ∈ Irr(A) be such that a′ ≤ x. Since fh is onto, there

is y ∈ dom fh such that fh(y) = x. Since a′ ≤ x = fh(y), it follows by Lemma 4.5 that

h(a′) ≤ y. Thus h(a) ≤ y. By Lemma 4.5, we obtain that a ≤ fh(y) = x. Then, we have

proved that ∀x ∈ Irr(A)(a′ ≤ x =⇒ a ≤ x). Hence a ≤ a′. Similarly we have that a′ ≤ a.

That is, a = a′.

Proposition 5.3. Let A and B be finite distributive semilattices and h : A → B a ∧-
homomorphism. Then, h is onto if and only if the dual DS-morphism fh : X (B) → X (A)

satisfies the following conditions:

(i) dom fh = Irr(B);

(ii) fh is an order-embedding;
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(iii) For every V ∈ A(X (B)),

γA

(⋃{
[fh(y))Irr(A) : y ∈ V

})
= 1.

Proof. Assume that h is onto. Let y ∈ Irr(B). Since h is onto, there is a ∈ A such that

h(a) = y. Then a ∈ h−1[(y]B]. Thus h−1[(y]B] ̸= ∅. Hence y ∈ dom fh. We have proved

that dom fh = Irr(B). In order to prove condition (ii), let y1, y2 ∈ dom fh be such that

fh(y1) ≤ fh(y2). By definition of fh, we obtain that
∨
h−1[(y1]B] ≤

∨
h−1[(y2]B]. Now, since

h is onto, there are a1, a2 ∈ A such that h(a1) = y1 and h(a2) = y2. Let

h−1[(y1]B] = {a11, . . . , a1n} and h−1[(y2]B] = {a21, . . . , a2m}.

Given that h(a1) = y1, we have a1 ∈ h−1[(y1]B]. Moreover, for every i = 1, . . . , n, h(a1i ) ≤
y1 = h(a1). Hence h(a1) = h(a11)∨ · · · ∨ h(a1n). Similarly, we have that h(a2) = h(a21)∨ · · · ∨
h(a2m). Since a11 ∨ · · · ∨ a1n ≤ a21 ∨ · · · ∨ a2m, it follows that

y1 = h(a1) = h(a11) ∨ · · · ∨ h(a1n) ≤ h(a21) ∨ · · · ∨ h(a2m) = h(a2) = y2.

Hence fh is an order-embedding, and thus condition (ii) holds. Let V ∈ A(X (B)). Recall

that A(X (B)) = {αB(b) : b ∈ B}. Thus, V = αB(b) for some b ∈ B. Since h is onto, there

is a ∈ A such that h(a) = b. Let us show that
⋃{

[fh(y))Irr(A) : y ∈ V
}
⊆ αA(a). Let y ∈ V .

By Lemma 4.5, we have V = αB(b) = αB(h(a)) = f−1
h [αA(a)]. Then, fh(y) ∈ αA(a). Since

αA(a) is an upset of Irr(A), it follows that [fh(y))Irr(A) ⊆ αA(a). Hence
⋃
{[fh(y))Irr(A) : y ∈

V } ⊆ αA(a). Now, since γA(αA(a)) = 1, and by condition (S3) of Definition 3.1, it follows

that γA
(⋃

{[fh(y))Irr(A) : y ∈ V }
)
= 1. Hence, condition (iii) holds.

Conversely, suppose that fh satisfies conditions (i)–(iii). Let b ∈ B. By condition (iii),

we have that

γA

(⋃
{[fh(y))Irr(A) : y ∈ αB(b)}

)
= 1.

Let U :=
⋃
{[fh(y))Irr(A) : y ∈ αB(b)}. Then, we obtain that U ∈ A(X (A)). Thus, there

is a ∈ A such that U = αA(a). We prove that h(a) = b. Let y ∈ Irr(B). If b ≤ y, then

fh(y) ∈ [fh(y))Irr(A) ⊆ U . It follows that a ≤ fh(y), and thus h(a) ≤ y. Hence h(a) ≤ b.

Now suppose that h(a) ≤ y. Thus a ≤ fh(y). Then fh(y) ∈ αA(a) = U . It follows that there

is y′ ∈ αB(b) such that fh(y
′) ≤ fh(y). Since fh is order-embedding, we have that y′ ≤ y.

Then y ∈ αB(b), and thus b ≤ y. Hence b ≤ h(a). Therefore, h(a) = b.
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Figure 2:

The following example shows that condition (iii) of the previous proposition is not a

consequence of conditions (i) and (ii). In other words, conditions (i) and (ii) on fh does not

imply that h is onto.

Example 5.4. Consider the diagrams in Figure 2. It is clear that fh satisfies conditions

(i) and (ii) of Proposition 5.3. It is also clear that h is a ∧-homomorphism and it is not

an onto map. Let us see that fh does not satisfy condition (iii) of Proposition 5.3. Recall

that for every U ∈ Up(Irr(A)), γA(U) = 1 iff
∧
U exists in A. Moreover U ∈ A(X (A)) iff

U ∈ Up(Irr(A)) and γA(U) = 1. Let V := {y1, y2}. Thus V ∈ A(X (B)). We have⋃{
[fh(y))Irr(A) : y ∈ V

}
= [fh(y1))Irr(A) ∪ [fh(y2))Irr(A) = {x1, x2}.

Then, γA
(⋃{

[fh(y))Irr(A) : y ∈ V
})

̸= 1. Hence, condition (iii) does not hold.

5.2. ∧-subalgebras

Let ⟨A,∨, 1⟩ be a finite distributive semilattice. We will said that a subalgebra ⟨A0,∨, 1⟩
of ⟨A,∨, 1⟩ is a ∧-subalgebra when for all a1, . . . , an ∈ A0, if a1 ∧ · · · ∧ an exists in A, then

a1 ∧ · · · ∧ an ∈ A0.

Our main goal in this subsection is to obtain, from the dual equivalence, an effective

method to characterize all the ∧-subalgebras of a finite distributive semilattice.

Remark 5.5. Let ⟨A,∨, 1⟩ be a finite distributive semilattice and ⟨A0,∨, 1⟩ a ∧-subalgebra.
Let a1, . . . , an ∈ A0. If a1 ∧A0 · · · ∧A0 an exists in A0, then a1 ∧A0 · · · ∧A0 an = a1 ∧ · · · ∧ an.

That is, the infimum of {a1, . . . , an} exists in A and it is a1 ∧A0 · · · ∧A0 an. Hence, every

∧-subalgebra is also distributive.

Let ⟨A,∨, 1⟩ be a finite distributive semilattice and ⟨X, γ⟩ its dual DS-structure. From

Proposition 5.2, we have that the ∧-subalgebras of A are dually characterized as those

DS-structures ⟨Y, τ⟩ for which there is an onto DS-morphism f : ⟨X, γ⟩ → ⟨Y, τ⟩.
17



Let ⟨X, γ⟩ and ⟨Y, τ⟩ be finite DS-structures. Let f : ⟨X, γ⟩ → ⟨Y, τ⟩ be an onto DS-

morphism. Let X0 := dom f ∈ Up(X). Let θf := {(x, x′) ∈ X2
0 : f(x) = f(x′)}. It is clear

that θf is an equivalence relation on X0 = dom f . Let

X0/θf := {x/θf : x ∈ dom f}.

We define a binary relation ⪯ on X0/θf as follows:

x/θf ⪯ x′/θf ⇐⇒ f(x) ≤ f(x′),

for all x, x′ ∈ dom f . Notice that the definition of the relation ⪯ does not depend on the

representatives in the equivalence classes.

Proposition 5.6. The relation ⪯ is a partial order on X0/θf .

We define the canonical partial function π : X → X0/θf as follows:

domπ = dom f and π(x) = x/θf ,

for every x ∈ domπ. It is straightforward to show directly that π satisfies conditions (M1)

and (M2) of Definition 4.1.

Now let us define a (total) function f̂ : X0/θf → Y as follows:

f̂(x/θf ) = f(x),

for every x ∈ dom f . By the definition of θf , we have that f̂ is well-defined.

Proposition 5.7. The map f̂ : ⟨X0/θf ,⪯⟩ → ⟨Y,≤⟩ is an order-isomorphism.

Proof. Let x/θf , x
′/θf ∈ X0/θf . Then, by the definition of ⪯ and f̂ , we have

x/θ ⪯ x′/θf ⇐⇒ f(x) ≤ f(x′) ⇐⇒ f̂(x/θf ) ≤ f̂(x′/θf ).

Thus, f̂ is an order-embedding. Moreover, since f is onto, it follows that f̂ is also an onto

map. Hence, f̂ is an order-isomorphism.

Now we define a map γ̂ : Up(X0/θf ) → {0, 1} as follows: γ̂(W ) = τ(f̂ [W ]), for every

W ∈ Up(X0/θf ).

Proposition 5.8. ⟨X0/θf , γ̂⟩ is a DS-structure.
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Proof. (S1) γ̂(∅) = τ(f̂ [∅]) = τ(∅) = 1.

(S2) Since f̂ is an order-isomorphism, it follows that f̂ [[x/θf )X0/θf ] = [f̂(x/θf ))Y . Then,

γ̂
(
[x/θf )X0/θf

)
= τ

(
f̂ [[x/θf )X0/θf ]

)
= τ

(
[f̂(x/θf ))Y

)
= 1.

(S3) Let W1,W2 ∈ Up(X0/θf ) be such that W1 ⊆ W2. Thus f̂ [W1] ⊆ f̂ [W2]. Then,

γ̂(W2) = τ
(
f̂ [W2]

)
≤ τ

(
f̂ [W1]

)
= γ̂(W1).

Theorem 5.9. The function f̂ : ⟨X0/θf , γ̂⟩ → ⟨Y, τ⟩ is an isomorphism in the category S f .

Proof. From Proposition 5.7, we have that f̂ : X0/θf → Y is an order-isomorphism, and by

the definition of γ̂, it follows that

γ̂(W ) = 1 ⇐⇒ τ
(
f̂ [W ]

)
= 1,

for every W ∈ Up(X0/θf ). Therefore, f̂ is an isomorphism of S f .

Finally, we are ready to obtain a dual characterization of the ∧-subalgebras. Let A be

a finite distributive semilattice and ⟨X, γ⟩ its dual DS-structure. Then, by Proposition 5.2

and Theorem 5.9, we obtain that the ∧-subalgebras of A are dually characterized by the

DS-structures of the form ⟨X0/θ, γ̂⟩ satisfying the following conditions:

(1) X0 ∈ Up(X);

(2) θ is an equivalence relation defined on X0;

(3) X0/θ is partially ordered by a partial order ⪯ such that the canonical partial function

π : X → X0/θ, defined by π(x) = x/θ for every x ∈ X0, is order-preserving;

(4) γ̂ : Up (X0/θ) → {0, 1} is a function such that ⟨X0/θ, γ̂⟩ is a DS-structure and π : ⟨X, γ⟩ →
⟨X0/θ, γ̂⟩ is a DS-morphism.

Example 5.10. Let A be the distributive semilattice given in Figure 3. Then X := Irr(A) =

{x1, x2, x3, x4, x5, x6} and X is ordered by the order induced by the order of A, see Figure 3.

Recall that γA : Up(X) → {0, 1} is defined as: γA(U) = 1 iff
∧
U exists in A. Hence ⟨X, γA⟩

is the dual DS-structure of A. We recall that A(X) = {U ∈ Up(X) : γA(U) = 1} and A ∼=
A(X). ThusA(X) = {∅}∪{[xi)X : i = 1, . . . , 6}∪{[x4)X∪[x5)X , [x4)X∪[x6)X , [x5)X∪[x6)X}.
Now let us build up a ∧-subalgebra of A following the previous steps:
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Figure 3:
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∅

A (X0/θ)

Figure 4:

(1) Let X0 = {x1, x2, x4, x5, x6} ∈ Up(X);

(2) Let θ be the least equivalence relation such that (x2, x6) ∈ θ;

(3) Let ⪯ be the partial order on X0/θ as given in Figure 4;

(4) Let γ̂ : Up (X0/θ) → {0, 1} be defined as follows:

A (X0/θ) = γ̂−1[{1}] = {∅, [x1/θ), [x2/θ), [x4/θ), [x5/θ), [x4/θ) ∪ [x5/θ)}.

Hence ⟨A(X0/θ),⊔, ∅⟩, with ⊔ = ∩, is (isomorphic to) a ∧-subalgebra of A, see Figure 4.

5.3. Finite semi-boolean algebras

A semilattice ⟨A,∨, 1⟩ is called a semi-boolean algebra (see [2]) if every principal upset

[a) is a Boolean algebra. Thus, it is clear that semi-boolean algebras are, in particular,

distributive semilattices satisfying the lower bound property. In this subsection, we obtain

a representation for the class of finite semi-boolean algebras.
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Let A be a semilattice. An element x ∈ A is said to be a dual atom if x ̸= 1 and there

is no element a ∈ A such that x < a < 1. We denote by Atd(A) the collection of all dual

atoms of A.

Let ⟨A,∨, 1⟩ be a finite distributive semilattice. Recall that for every a ∈ A, [a) is a

Heyting algebra and →a is the Heyting implication on [a) (see (2.1)). In particular, if A

is a semi-boolean algebra, then →a is the Boolean implication on the Boolean algebra [a).

Moreover, recall the Hilbert implication → on A defined by (2.2), see also Corollary 2.12.

Proposition 5.11. Let ⟨A,∨, 1⟩ be a finite distributive semilattice. Then, A is a semi-

boolean algebra if and only if Irr(A) = Atd(A).

Proof. Assume that A is a semi-boolean algebra. First, it is clear that Atd(A) ⊆ Irr(A).

Let x ∈ Irr(A), and let a ∈ A be such that x < a ≤ 1. Since x is irreducible, it follows by

Proposition 2.7 that a → x = x. Then, (a∨ x) →x x = x. That is, a →x x = x. Since [x) is

a Boolean algebra, it follows that a = 1. Hence x ∈ Atd(A).

Conversely, assume that Atd(A) = Irr(A). Let a ∈ A. It is straightforward to show that

Atd([a)) = Atd(A)∩ [a). Thus, by hypothesis, we have Atd([a)) = Irr(A)∩ [a). Moreover, it

is easy to show that Irr([a)) = Irr(A) ∩ [a). Then, we have that Atd([a)) = Irr([a)). Hence,

since [a) is a finite distributive lattice and Atd([a)) = Irr([a)), it follows that [a) is a Boolean

algebra. Therefore, A is a semi-boolean algebra.

Theorem 5.12. Let A be a finite distributive semilattice and ⟨X, γ⟩ its dual DS-structure.

Then, A is a semi-boolean algebra if and only if X is an antichain.

Proof. Assume that A is a semi-boolean algebra. By the previous proposition, we have

that Irr(A) = Atd(A). Then, since X is order-isomorphic to Irr(A), it follows that X is an

antichain. Conversely, assume that X is an antichain. Recall that ⟨A,∨, 1⟩ ∼= ⟨A(X),⊔, ∅⟩
and A(X) = {U ∈ Up(X) : γ(U) = 1}. Since X is an antichain, we have that Up(X) =

P(X). Let U ∈ A(X) and W ∈ [U)A(X). Consider W− := U \ W . Thus, W− ⊆ U

and W− ∈ Up(X). Then, W− ∈ [U)A(X). We have that W ⊓ W− = W ∪ W− = U and

W ⊔W− = W ∩W− = ∅. Hence W− is the complement of W in [U)A(X). Thus, [U)A(X) is

a Boolean algebra. Then A(X) is a semi-boolean algebra. Therefore, A is a semi-boolean

algebra.

From the previous theorem and by Theorem 4.12, we obtain that the category of finite

semi-boolean algebras and ∧-homomorphisms is dually equivalent to the category of finite

DS-structures ⟨X, γ⟩ such that X is antichain and DS-morphisms. Moreover, notice that
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finite semi-boolean algebras correspond dually to structures ⟨X, γ⟩ where X is a finite set

and γ : P(X) → {0, 1} is a map satisfying conditions (S1)–(S3) of Definition 3.1 (considering

the trivial order on X: x ≤ y ⇐⇒ x = y). Also, notice that if ⟨X, γ⟩ and ⟨Y, τ⟩ are finite

DS-structures such that X and Y are antichains, then a partial function f : X → Y is a

DS-morphism if and only if it satisfies (M3) of Definition 4.1. That is, in this context, the

conditions (M1) and (M2) are always valid.

References

[1] Abbott, J.C.: Implicational algebras. Bull. Math. R. S. Roumanie 11(1), 3–23 (1967)
[2] Abbott, J.C.: Semi-boolean algebra. Mat. Vesnik 4(19), 177–198 (1967)
[3] Balbes, R.: A representation theory for prime and implicative semilattices. Trans. Amer. Math. Soc.

136, 261–267 (1969)
[4] Birkhoff, G.: Rings of sets. Duke Math. J. 3(3), 443–454 (1937)
[5] Calomino, I., Celani, S.: A note on annihilators in distributive nearlattices. Miskolc Math. Notes 16(1),

65–78 (2015)
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