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ABSTRACT. In this paper we shall investigate the mildly distributive meet-semilattices by means of

the study of their filters and Frink-ideals as well as applying the theory of annihilator. We recall some

characterizations of the condition of mildly-distributivity and we give several new characterizations.
We prove that the definition of strong free distributive extension, introduced by Hickman in 1984,

can be simplified and we show a correspondence between (prime) Frink-ideals of a mildly distributive
semilattice and (prime) ideals of its strong free distributive extension.
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1. Introduction

Mildly distributive semilattices were introduced and studied in [12] by Hickman. This class of
semilattices lies between two important classes of semilattices: distributive semilattices [11] and
weakly distributive semilattices [6] (also called prime semilattices in [1]). The class of weakly
distributive semilattices was introduced in [1] by Balbes with the name of prime semilattices and
this class was intensively studied in [6] due to Cornish and Hickman. In [11] Grätzer introduces
distributive join-semilattices and gives a topological representation generalizing the spectral-style
topological representation for distributive lattices proved by Stone. There are several works study-
ing the class of distributive semilattices such as [5], [11], [14] and [15]. In [3] (also see [4]) Celani
presented a full spectral-style topological duality for distributive semilattices extending the pre-
vious topological representation given by Grätzer. On the other hand, in [2] Bezhanishvili and
Jansana introduced a Priestley-style topological duality for distributive semilattices that general-
izes the well-known topological duality for distributive lattices due to Priestley.

The main purpose of this paper is to study from an algebraic point of view the class of mildly
distributive semilattices and investigate different characterizations of the condition of mildly-
distributivity. We will recall some known characterizations in the literature of the condition of
mildly-distributivity on semilattices and we show some new characterizations.

The paper is organized as follows. In Section 2 we introduce some notations and we recall some
definitions and basic properties of filters and ideals for posets which are needed in the paper. In
Section 3 we recall the notions of meet-prime, irreducible, prime and optimal filters of a semilattice
and we also consider the notions of irreducible and prime Frink-ideal. We prove a separation
theorem between filters and Frink-ideals by means of irreducible Frink-ideals. In Section 4 we will
study the class of mildly distributive semilattices introduced by Hickman [12]. For this purpose we
put our attention on the several notions of prime filters and prime Frink-ideals that we introduced
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in the previous section. Also, we present several characterizations of the mildly-distributivity
condition on semilattices.

In [12] (see also [6]), Hickman introduces the notion of strong free distributive extension of a
semilattice. A similar notion is considered in [2] for distributive semilattices (under the name
of ‘distributive envelope’). In Section 5 we will provide a useful simple characterization of the
strong free distributive extension of a mildly distributive semilattice. Finally, we will prove that
the ordered set of (prime) Frink-ideals of a mildly distributive semilattice is order-isomorphic to
the ordered set of (prime) ideals of its strong free distributive extension.

2. Preliminaries

Let P = 〈P,≤〉 be a poset. A set Y ⊆ P is a down-set provided that for every b ∈ P if b ≤ a for
some a ∈ Y , then b ∈ Y . Dually, a subset X ⊆ P is called an up-set when for every b ∈ P if a ≤ b
for some a ∈ Y , then b ∈ Y . If a ∈ P , ↓a or (a] denotes the down-set {b ∈ P : b ≤ a} and ↑a or [a)
denotes the up-set {b ∈ P : a ≤ b}. If Y ⊆ P , let Y u denote the set of all upper bounds of Y and
Y l the set of all lower bounds of Y . Note that if x ∈ P , then ↓x = ({x})ul and ↑x = ({x})lu.

A subset I ⊆ P is called a Frink-ideal of P when for every finite X ⊆ I, (X)ul ⊆ I (cf. [10]).
Dually, a subset F ⊆ P is called a Frink-filter of P when for every finite X ⊆ F , (X)lu ⊆ F . It
should be noted that the empty set may be a Frink-ideal or a Frink-filter. It immediately follows
that Frink-filters are up-sets and Frink-ideals are down-sets. Note that P is both a Frink-filter
and a Frink-ideal. A Frink-filter is proper if it is not P and similarly we say that a Frink-ideal is
proper.

It is not hard to see that a subset I ⊆ P is a Frink-ideal if and only if for every a1, . . . , an ∈ I
and c ∈ P , whenever [a1) ∩ · · · ∩ [an) ⊆ [c), we have c ∈ I and if c is a smallest element of P then
also c ∈ I. Dually we can state the similar condition for Frink-filters. Let L be a semilattice. We
denote by FId(P ) the family of all Frink-ideals of P . It is known, and is not hard to check, that
FId(P ) is an algebraic closure system. So for every subset X of P we have the Frink-ideal generated
by X, which it is denoted by IdF(X). Moreover, it is straightforward to show

IdF(X) = {a ∈ P : [x1) ∩ · · · ∩ [xn) ⊆ [a) for some x1, . . . , xn ∈ X}.
Then, we have that FId(P ) = 〈FId(P ),∩,∨〉 is a complete lattice. A Frink-ideal of P is called
finitely generated if there exists a non-empty finite subset X ⊆ P such that I = IdF(X). Let us

denote by FIdf(P ) the collection of all finitely generated Frink-ideals of P .

A non-empty subset I ⊆ P is said to be an order-ideal of P if it is an up-directed down-set,
that is, a down-set of P such that for every a, b ∈ I there is c ∈ I such that a, b ≤ c. Similarly
a non-empty subset F ⊆ P is said to be an order-filter of P if it is a down-directed up-set, that
is, an up-set of P such that for every a, b ∈ F there is c ∈ F with c ≤ a, b. Every order-ideal is a
Frink-ideal and every order-filter is a Frink-filter.

3. Semilattices

In this section we introduce the basic notions about semilattices as well as some properties that
we will need throughout the paper.

A meet-semilattice is an algebra L = 〈L,∧〉 of type (2) such that the operation ∧ is idempo-
tent, commutative, associative. In this paper, unless stated otherwise, semilattice means meet-
semilattice. As usual, the binary relation ≤ defined by a ≤ b if and only if a ∧ b = a is a partial
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order and for every a, b ∈ L, a ∧ b is the infimum of a and b. A semilattice with top element is
an algebra 〈L,∧, 1〉 of type (2, 0) such that 〈L,∧〉 is a semilattice and a ∧ 1 = a for all a ∈ L and
a bounded semilattice is an algebra 〈L,∧, 0, 1〉 of type (2, 0, 0) such that 〈L,∧, 1〉 is a semilattice
with top element and a ∧ 0 = 0 for all a ∈ L.

Let L be a semilattice. A subset F ⊆ L is said to be a filter of L if it is an order-filter of the
semilattice order. This holds if and only if (1) for every a, b ∈ F , a∧ b ∈ F and (2) for every a ∈ F
and b ∈ L, if a ≤ b, then b ∈ F . We denote the collection of all filters of L by Fi(L). Notice that
if L has top element, then Fi(L) is an algebraic closure system and if L has no top element, then
Fi(L) ∪ {∅} is a closure system. So, in any case, for every non-empty subset X of L we can take
the least filter of L that contains to X and we denote it by Fi(X). A filter F ∈ Fi(L) is proper if
F 6= L. A proper filter F of L is called meet-prime if it is a meet-prime element of the lattice of
filters, i.e., for all filters F1, F2 of L, if F1∩F2 ⊆ F then F1 ⊆ F or F2 ⊆ F . We denote by Fimpr (L)
the family of all meet-prime filters of L. A proper filter F of L is called irreducible if for all filters
F1, F2 of L, if F1 ∩ F2 = F then F1 = F or F2 = F and we denote by Fiirr(L) the collection of
all irreducible filters of L. It is clear that a filter F of L is irreducible if and only if for any finite
subfamily F1, . . . , Fn of Fi (A), if F = F1 ∩ · · · ∩ Fn then F = Fi for some 1 ≤ i ≤ n. Notice that
every meet-prime filter is irreducible. The converse is valid in the class of distributive semilattice
(see [3]).

The following two results will be needed in Theorem 4.5, where we prove several characterizations
of mildly distributive semilattice. The next lemma is a generalization of [3: Lemma 6].

Lemma 3.1. Let L be a semilattice. A proper filter F of L is irreducible if and only if for every
a1, . . . , an /∈ F there exists c /∈ F and f ∈ F such that ai ∧ f ≤ c for all 1 ≤ i ≤ n.

Theorem 3.2 ([3]). Let L be a semilattice. Let F ∈ Fi(L) and I be an order-ideal of L. If
F ∩ I = ∅, then there exists P ∈ Fiirr(L) such that F ⊆ P and P ∩ I = ∅.

The following two definitions together with the notion of meet-prime filter are the most natural
notions that generalize the notion of prime filter in Lattice Theory.

Definition 3.3. Let L be a semilattice. A proper filter F of L is said to be optimal if Lr F is
a Frink-ideal. We denote by Opt(L) the collection of all optimal filters of L.

Definition 3.4. Let L be a semilattice. A proper filter F of L is called prime if for each non-
empty finite subset {a1, . . . , an} of L such that there exists a1∨ · · ·∨an in L and a1∨ · · ·∨an ∈ F ,
then ai ∈ F for some 1 ≤ i ≤ n. Let us denote by Fipr (L) the family of all prime filters of a
semilattice L.

The following lemma shows the relation between the notions of meet-prime, optimal and prime
filters of a semilattice.

Lemma 3.5. For each semilattice L, we have

Fimpr (L) ⊆ Opt(L) ⊆ Fipr (L) ,

and
Fimpr (L) ⊆ Fiirr(L) ∩ Fipr (L) .

P r o o f. Let F ∈ Fimpr (L). Let a1, . . . , an ∈ F c and let a ∈ L be such that [a1) ∩ · · · ∩ [an) ⊆ [a).
We suppose that a ∈ F . So, we have that [a1) ∩ · · · ∩ [an) ⊆ [a) ⊆ F and, since F is a meet-prime
filter, it follows that there is 1 ≤ i ≤ n such that [ai) ⊆ F . Then ai ∈ F , which is a contradiction.
Then, a ∈ F c. Therefore, F is optimal.

Now let F ∈ Opt(L). Let {a1, . . . , an} be a finite subset of L and assume that there exists
a1 ∨ · · · ∨ an in L and a1 ∨ · · · ∨ an ∈ F . Suppose towards a contradiction that a1, . . . , an /∈ F .
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Since [a1) ∩ · · · ∩ [an) = [a1 ∨ · · · ∨ an) and F is optimal, we obtain that a1 ∨ · · · ∨ an /∈ F . So we
arrive to an absurd. Hence ai ∈ F , for some 1 ≤ i ≤ n.

The proof of the inclusion Fimpr (L) ⊆ Fiirr(L) ∩ Fipr (L) is easy and left to the reader. �

Let L be a semilattice. Given a proper Frink-ideal I of L, we say that I is prime when for all
I1, I2 ∈ FId(L), if I1 ∩ I2 ⊆ I then I1 ⊆ I or I2 ⊆ I. We also say that I is irreducible when for
all I1, I2 ∈ FId(L), if I1 ∩ I2 = I then I1 = I or I2 = I. We denote by FIdpr(L) the family of all
prime Frink-ideals of L and by FIdirr(L) the family of all irreducible Frink-ideals of L. It is clear
that FIdpr(L) ⊆ FIdirr(L). The following three results are generalizations of well-known properties
in Lattice Theory.

Lemma 3.6. Let L be a semilattice and I ⊆ L. Then, I ∈ FIdpr(L) if and only if Ic ∈ Opt(L).

The proof of the following lemma is analogous to the case of prime ideal in Lattice Theory.

Lemma 3.7. Let L be a semilattice. Let I be a proper Frink-ideal of L. Then, I is prime if and
only if for all a, b ∈ L, if a ∧ b ∈ I, then a ∈ I or b ∈ I.

Lemma 3.8 (Irreducible Frink-ideal theorem). Let L be a semilattice. If I is a Frink-ideal and F
is a filter such that F ∩ I = ∅, then there exists an irreducible Frink-ideal J such that I ⊆ J and
F ∩ J = ∅.

P r o o f. Consider the family

F = {J ∈ FId(L) : I ⊆ J and F ∩ J = ∅} .
It is clear that the family F is non-empty and closed under chains. Then, by Zorn’s lemma there
is M a maximal element of F . We show that M is irreducible. Let J1, J2 ∈ FId(L) be such that
M = J1∩J2. Suppose towards a contradiction that M ⊂ J1 and M ⊂ J2. Then, by the maximality
of M , we have there are x ∈ J1 ∩ F and y ∈ J2 ∩ F . We thus obtain that x ∧ y ∈ F ∩M , which is
a contradiction. Hence M is irreducible. �

4. Characterizations of the condition of mildly distributivity

Definition 4.1. A mildly distributive semilattice, or md-semilattice, is a semilattice L = 〈L,∧〉
such that the lattice FId(L) is distributive.

Let L be a semilattice. Consider the set

Fiω(L) = {[a1) ∩ · · · ∩ [an) : a1, . . . , an ∈ L} .
If L has no top element, then Fiω(L) is a sub meet-semilattice of Fi(L) ∪ {∅} and if L has a top
element, then Fiω(L) is a sub meet-semilattice of Fi(L). Moreover, Hickman in [12] proved that

Fiω(L) is dually isomorphic to FIdf(L).

Theorem 4.2 ([12]). Let L be a semilattice. Then, the following conditions are equivalent:

(1) L is an md-semilattice,

(2) FIdf(L) is a distributive sublattice of FId(L),

(3) FIdf(L) is a distributive lattice,

(4) Fiω(L) is a distributive lattice,

(5) for all a1, . . . , an ∈ L and a ∈ L, if [a1) ∩ · · · ∩ [an) ⊆ [a), then

a = (a ∧ a1) ∨ (a ∧ a2) ∨ · · · ∨ (a ∧ an).
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We denote by ∨̇ the join in Fiω(L), when it exists and this should be kept in mind, because it
will be repeatedly used later on.

Lemma 4.3. Let L be an md-semilattice and let F be a filter of L. Then F is prime if and only
if it is optimal.

P r o o f. By Lemma 3.5 we have that every optimal filter is prime. Now assume that F is prime.
Let a ∈ L and let a1, . . . , an /∈ F be such that [a1)∩ · · · ∩ [an) ⊆ [a). Then a = (a∧ a1)∨ (a∧ a2)∨
· · · ∨ (a ∧ an). Since a1, . . . , an /∈ F , we obtain that a ∧ ai /∈ F , for each 1 ≤ i ≤ n. As F is prime,
(a ∧ a1) ∨ (a ∧ a2) ∨ · · · ∨ (a ∧ an) /∈ F and thus a /∈ F . Then F is optimal. �

The following theorem provides several new characterizations of md-semilattices. One of them
characterizes md-semilattices as those semilattices where the elements can be separated by means
of optimal filters, other one is by mean of irreducible and optimal filters and other of the char-
acterizations uses the notion of relative maximal filter. Thus, we introduce the corresponding
definition.

Definition 4.4. Let L be a semilattice and let S be a subset of L closed under meets. A proper
filter F of L is called a relative maximal filter with respect to S, when F is maximal among filters
which are disjoint to S. If L is a semilattice with zero, then a relative maximal filter respect to (0]
is simply referred as a maximal filter or ultrafilter.

Theorem 4.5. Let L be a semilattice. Then, the following conditions are equivalent:

(1) L is an md-semilattice;

(2) every relative maximal filter F respect to a Frink-ideal I of L is optimal;

(3) for every pair (F, I) ∈ Fi(L) × FId(L), if F ∩ I = ∅, then there exists P ∈ Opt(L) such that
F ⊆ P and P ∩ I = ∅;

(4) every irreducible filter of L is an optimal filter of L;

(5) for every x, y ∈ L, if x � y, then there exists P ∈ Opt(L) such that x ∈ P and y /∈ P .

P r o o f. (1)⇒ (2) Let I ∈ FId(L) and let F be a relative maximal filter respect to I. Let us prove
that F is optimal. Let a1, . . . , an, a ∈ L be such that [a1) ∩ . . . ∩ [an) ⊆ [a) and a1, . . . , an /∈ F .
Consider the filters Fai

= Fi(F ∪ {ai}), for 1 ≤ i ≤ n. Since F is a relative maximal filter respect
to I, it follows that Fai

∩ I 6= ∅ for each 1 ≤ i ≤ n. Then, for every 1 ≤ i ≤ n there are elements
fi ∈ F and xi ∈ I such that fi ∧ ai ≤ xi. As F is a filter, f := f1 ∧ · · · ∧ fn ∈ F . So, f ∧ ai ≤ xi

for every 1 ≤ i ≤ n. Then,

n⋂
i=1

[xi) ⊆
n⋂

i=1

[f ∧ ai) =

n⋂
i=1

([f)∨̇[ai)) = [f)∨̇
n⋂

i=1

[ai) ⊆ [f)∨̇[a) = [f ∧ a).

Since I is a Frink-ideal, we get that f ∧a ∈ I. As F ∩ I = ∅, we have that f ∧a /∈ F and, as f ∈ F ,
we deduce that a /∈ F . Thus, F ∈ Opt(L).

(2)⇒ (3) It is not hard and thus we left the details to the reader.

(3)⇒ (4) Let F be an irreducible filter of L. To show that F is optimal, let a1, . . . , an ∈ LrF
and a ∈ L be such that [a1) ∩ · · · ∩ [an) ⊆ [a). Since a1, . . . , an /∈ F , it follows by Lemma 3.1
that there exist c /∈ F and f ∈ F such that ai ∧ f ≤ c for all i = 1, . . . , n. Now, by (3), there is
P ∈ Opt(L) such that F ⊆ P and c /∈ P . Since ai ∧ f /∈ P for all i = 1, . . . , n and f ∈ P , it follows
that a1, . . . , an /∈ P . Then a ∈ Lr P , because Lr P is a Frink-ideal. Hence a /∈ F and therefore
Lr F is a Frink-ideal of L. We thus obtain that F is optimal.

(4)⇒ (5). It is a direct consequence from Theorem 3.2.
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(5) ⇒ (1) Let a1, . . . , an ∈ L and a ∈ L be such that [a1) ∩ · · · ∩ [an) ⊆ [a). We prove that
[a) = [a ∧ a1) ∩ · · · ∩ [a ∧ an). Otherwise suppose that [a ∧ a1) ∩ · · · ∩ [a ∧ an) * [a). Then there
exists z ∈ [a ∧ a1)∩· · ·∩ [a ∧ an) such that a � z. So, there exists P ∈ Opt(L) such that a ∈ P and
z /∈ P . As P is optimal, ai ∈ P for some 1 ≤ i ≤ n. But then we have that a ∧ ai ∈ P. So z ∈ P ,
which is impossible. So, [a) = [a ∧ a1)∩· · ·∩ [a ∧ an) and thus a = (a∧a1)∨(a∧a2)∨· · ·∨(a∧an).
Then L is an md-semilattice. �

Remark 4.6. Let L be a semilattice. By Lemmas 3.5 and 4.3 and Theorem 4.5 we have that L
is an md-semilattice if and only if

Fimpr (L) ⊆ Fiirr(L) ⊆ Opt(L) = Fipr (L) .

We note that Fimpr (L) = Fiirr(L) if and only if L is distributive [3: Theorem 10]. As always
Fimpr (L) ⊆ Opt(L), if L is distributive, then Fimpr (L) = Fiirr(L) ⊆ Opt(L) and thus, by the last
inclusion, we deduce that L is an md-semilattice. Hence we have shown that every distributive
semilattice is an md-semilattice.

The following characterization of mildly-distributivity is a more or less a direct consequence of
the definition itself. First we show that for an md -semilattice L, FId(L) is more than a distributive
complete lattice. To see this, we define on FId(L) the following binary operation → as follows:

I → J := {a ∈ L : (a] ∩ I ⊆ J}
for each pair I, J ∈ FId(L). It is easy to see that the operation → can be also defined as

I → J := {a ∈ L : a ∧ b ∈ J for all b ∈ I}.

Lemma 4.7. Let L be an md-semilattice. Then, 〈FId(L),∩,∨,→, I0, L〉, where I0 = IdF(∅), is a
complete Heyting algebra.

P r o o f. We only need to prove that the operation → is well defined and satisfies the property
I ∩ J ⊆ K ⇔ J ⊆ I → K, for every I, J,K ∈ FId(L).

Let I, J ∈ FId(L) and let a1, . . . , an ∈ I → J and a ∈ L be such that
n⋂

i=1

[ai) ⊆ [a). Let x ∈ I.

Then ai ∧ x ∈ J for all 1 ≤ i ≤ n. So,
n⋂

i=1

[ai ∧ x) =

n⋂
i=1

([ai)∨̇[x)) =
( n⋂
i=1

[ai)
)
∨̇[x) ⊆ [a)∨̇[x) = [a ∧ x).

As J is a Frink-ideal and ai ∧ x ∈ J , for all 1 ≤ i ≤ n, we get that a ∧ x ∈ J . Thus, a ∈ I → J ,
and consequently I → J is a Frink-ideal of L.

Now, let I, J,K ∈ FId(L). Assume that I ∩J ⊆ K. Let a ∈ J and x ∈ (a]∩ I. So, x ∈ I ∩J and
then x ∈ K. Hence, J ⊆ I → K. Conversely, suppose that J ⊆ I → K and let a ∈ I ∩ J . Then,
a ∈ I → K. Which implies that (a] ∩ I ⊆ K. Since a ∈ (a] ∩ I, we obtain that a ∈ K. Then,
I ∩ J ⊆ K. �

Theorem 4.8. Let L be a semilattice. Then, L is an md-semilattice if and only if 〈FId(L),∩,∨,→,
I0, L〉, is a complete Heyting algebra.

P r o o f. The direction ⇒ is the above lemma. If 〈FId(L),∩,∨,→, I0, L〉 is a Heyting algebra then,
〈FId(L),∩,∨〉 is a distributive lattice and thus L is an md-semilattice. �

In [13] Mandelker studied the properties of relative annihilator and characterized distributive
lattices in terms of their relative annihilators. Later, Varlet in [16] gave a similar characterization
for distributive semilattices. Here we present a similar result for md-semilattices. First we recall
the definition of annihilator on semilattices.
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Let L be a semilattice. For each a, b ∈ L, the annihilator 〈a, b〉 of a relative to b is defined by

〈a, b〉 := {c ∈ L : a ∧ c ≤ b} .
For X,Y ⊆ L we denote by 〈X,Y 〉 the set

〈X,Y 〉 :=
⋃
{〈a, b〉 : (a, b) ∈ X × Y },

and we write 〈a, Y 〉 instead of 〈{a}, Y 〉. Moreover, notice that 〈[a), (b]〉 = 〈a, b〉 for all a, b ∈ L.
If I is a Frink-ideal of L, then the set 〈a, I〉 is called the annihilator of a relative to I and it
should be noted that 〈a, I〉 = {c ∈ L : a ∧ c ∈ I}. In particular, if L has zero 0, the set
a⊥ = 〈a, 0〉 = {c ∈ A : a ∧ c = 0} is called the annulet or annihilator of a (see [7], [8], and [9]).

Lemma 4.9. Let L be a semilattice. Let I be a down-set of L. If 〈a, I〉 ∈ FId(L) for all a ∈ L,
then I ∈ FId(L).

P r o o f. Let x1, . . . , xn ∈ I and x ∈ L be such that [x1) ∩ · · · ∩ [xn) ⊆ [x). Since x ∧ xi ≤ xi for
all i = 1, . . . , n and I is a down-set, it follows that x ∧ xi ∈ I for all i = 1, . . . , n. So, xi ∈ 〈x, I〉
for every 1 ≤ i ≤ n and, because 〈x, I〉 is a Frink-ideal we have x ∈ 〈x, I〉. Then x ∈ I. Thus,
I ∈ FId(L). �

Theorem 4.10. Let L be a semilattice. Then L is an md-semilattice if and only if 〈a, I〉 is a
Frink-ideal for each a ∈ L and for each I ∈ FId(L).

P r o o f. Assume that L is an md-semilattice. Let a ∈ L and I ∈ FId(L). It is clear that 〈a, I〉 is
a down-set of L. We prove that it is a Frink-ideal. Let x1, . . . , xn ∈ 〈a, I〉 and let x ∈ L be such
that [x1) ∩ · · · ∩ [xn) ⊆ [x). Then xi ∧ a ∈ I for every 1 ≤ i ≤ n. From Theorem 4.2, we obtain

[x1 ∧ a) ∩ · · · ∩ [xn ∧ a) = ([x1) ∨̇ [a)) ∩ · · · ∩ ([xn) ∨̇ [a))

= ([x1) ∩ · · · ∩ [xn))∨̇ [a) ⊆ [x) ∨̇ [a) = [x ∧ a) .

As xi ∧ a ∈ I for every 1 ≤ i ≤ n and I is a Frink-ideal, we obtain that x ∧ a ∈ I, i.e., x ∈ 〈a, I〉.
Thus 〈a, I〉 is a Frink-ideal.

Conversely, assume that 〈a, I〉 is a Frink-ideal for each a ∈ L and for each I ∈ FId(L). Let
a, a1, . . . , an ∈ L and assume that [a1)∩· · ·∩[an) ⊆ [a). We prove that [a ∧ a1)∩· · ·∩[a ∧ an) ⊆ [a).
Let b ∈ [a ∧ a1) ∩ · · · ∩ [a ∧ an). So a ∧ ai ≤ b for all 1 ≤ i ≤ n and then ai ∈ 〈a, b〉 for all
1 ≤ i ≤ n. As 〈a, b〉 = 〈a, (b]〉 is a Frink-ideal and [a1) ∩ · · · ∩ [an) ⊆ [a), we get that a ∈ 〈a, b〉,
i.e., a ∧ a = a ≤ b. So, [a ∧ a1) ∩ · · · ∩ [a ∧ an) ⊆ [a). Since the other inclusion is always valid, we
have that [a ∧ a1) ∩ · · · ∩ [a ∧ an) = [a). So, a = (a ∧ a1) ∨ (a ∧ a2) ∨ · · · ∨ (a ∧ an) and thus L is
an md-semilattice. �

The next characterization of prime Frink-ideal is used in the Theorem 4.12.

Lemma 4.11. Let L be a semilattice. Let I be a Frink-ideal. Then I is a prime if and only if
〈x, I〉 = I, for every x /∈ I.

P r o o f. Assume that I is a prime Frink-ideal of L. Let x /∈ I and y ∈ 〈x, I〉. So, x ∧ y ∈ I. As I
is prime and x /∈ I, we get that y ∈ I. Thus, 〈x, I〉 = I.

Assume that 〈x, I〉 = I, for every x /∈ I. Let a, b ∈ L such that a ∧ b ∈ I. Suppose a /∈ I
and b /∈ I. By hypothesis, I = 〈a, I〉. Since b /∈ I = 〈a, I〉, we get that a ∧ b /∈ I, which is a
contradiction. Hence, I is prime. �

Theorem 4.12. Let L be a semilattice. Then the following conditions are equivalent:

(1) L is an md-semilattice,

(2) for every x, y ∈ L, if 〈y, I〉 ⊆ 〈x, I〉 for all prime Frink-ideal I, then x ≤ y.
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P r o o f. (1)⇒ (2) Let x, y ∈ L be such that 〈y, I〉 ⊆ 〈x, I〉 for all prime Frink-ideal I of L. Assume
that x � y. By Theorem 4.5 there exist P ∈ Opt(L) such that x ∈ P and y /∈ P . Consider the
prime Frink-ideal I = P c. As y ∈ I, we get that L = 〈y, I〉 ⊆ 〈x, I〉. But this implies that
〈x, I〉 = L, i.e., x ∈ I, which is a contradiction. Thus, x ≤ y.

(2)⇒ (1) We apply Theorem 4.5. Let x, y ∈ L. Suppose that x � y. Then there exists a prime
Frink-ideal I such that 〈y, I〉 * 〈x, I〉. So, there exists z ∈ L such that y∧ z ∈ I and x∧ z /∈ I, i.e.,
y ∈ 〈z, I〉 and x /∈ 〈z, I〉. We note that z /∈ I. Since I is prime and using the previous lemma, it
follows that 〈z, I〉 = I. Then y ∈ I and x /∈ I. As P = Ic is an optimal filter, we have that x ∈ P
and y /∈ P . So, by Theorem 4.5 we conclude that L is an md-semilattice. �

5. Distributive lattice envelope of an md-semilattice

The main purpose of this section is to obtain an extension of an md-semilattice to a distributive
lattice where the md-semilattice is embedded in a very nice way. To this end, we need to introduce
the notions of strong homomorphism and strong embedding.

Let L and M be semilattices. We call a map h : L→M homomorphism, or meet-homomorphism,
if for all a, b ∈ L we have that h(a ∧ b) = h(a) ∧ h(b). A homomorphism h between semilattices is
called join-homomorphism if h preserves all existing finite joins (in [12] join-homomorphisms are
called join partial homomorphism). That is, if a1, . . . , an ∈ L and a1 ∨ · · · ∨ an exists in L, then
h(a1) ∨ · · · ∨ h(an) exists in M and equals to h(a1 ∨ · · · ∨ an). We say that a map h : L → M
is a strong homomorphism (see [12] and [2]) if it is a homomorphism and satisfies that for all
a1, . . . , an, a ∈ L,

[a1) ∩ · · · ∩ [an) ⊆ [a) =⇒ [h(a1)) ∩ · · · ∩ [h(an)) ⊆ [h(a)).

Moreover, if h is injective, we say that h is a strong embedding.

Let L and M be semilattices. If h : L → M is a strong homomorphism, then it is not hard
to show that h is a join-homomorphism. But, if L is an md-semilattice and M is an arbitrary
semilattice, then h : L → M is a strong homomorphism if and only if it is a join-homomorphism
(this can be seen in [12]). Thus, strong homomorphisms and join-homomorphisms coincide in
md-semilattices setting. Now, we give a characterization of the strong homomorphisms in terms
of optimal filters.

Lemma 5.1. Let L and M be two bounded md-semilattices and let h : L → M be an order-
preserving map such that preserves top and bottom. Then the following conditions are equivalent:

(1) h is a strong homomorphism.

(2) h−1(Q) ∈ Opt(L), for all Q ∈ Opt(M).

P r o o f. (1)⇒ (2) Let Q ∈ Opt(M). Since h is a homomorphism that preserves top and bottom,
it is clear that h−1(Q) ∈ Fi(L) and it is proper. Let a1, . . . , an /∈ h−1(Q) and a ∈ L be such that
[a1) ∩ · · · ∩ [an) ⊆ [a). As h is a strong homomorphism, we have [h(a1)) ∩ · · · ∩ [h(an)) ⊆ [h(a)).
So, h(a1), . . . , h(an) /∈ Q and then h(a) /∈ Q. Thus, a /∈ h−1(Q). Therefore, h−1(Q) is an optimal
filter of L.

(2)⇒ (1) Let a, b ∈ L. As h is order-preserving, we have h(a ∧ b) ≤ h(a) ∧ h(b). Suppose that
h(a) ∧ h(b) � h(a ∧ b). Then there exists Q ∈ Opt(M) such that h(a), h(b) ∈ Q and h(a ∧ b) /∈ Q.
So, a, b ∈ h−1(Q) and as h−1(Q) ∈ Fi(L), we get that a ∧ b ∈ h−1(Q), i.e., h(a ∧ b) ∈ Q, which is
a contradiction. Thus, h(a) ∧ h(b) ≤ h(a ∧ b), and consequently h is a meet-homomorphism. Now
let a1, . . . , an ∈ L and a ∈ L be such that [a1)∩ · · · ∩ [an) ⊆ [a). If [h(a1))∩ · · · ∩ [h(an)) * [h(a)),
there exists b ∈ M such that h(ai) ≤ b for all 1 ≤ i ≤ n and h(a) � b. So, there exists
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Q ∈ Opt(M) such that h(a) ∈ Q and b /∈ Q. As a ∈ h−1(Q) and h−1(Q) ∈ Opt(L), it follows that
ai ∈ h−1(Q) for some 1 ≤ i ≤ n. So, h(ai) ∈ Q and consequently b ∈ Q, which is impossible.
Thus, [h(a1)) ∩ · · · ∩ [h(an)) ⊆ [h(a)). Therefore h is a strong homomorphism. �

Lemma 5.2. Let L and M be semilattices. Let h : L→M be a strong homomorphism. If h is an

embedding and
n⋂

i=1

[h(ai)) ⊆ [h(a)), then
n⋂

i=1

[ai) ⊆ [a), for each a1, . . . , an, b ∈ L.

P r o o f. It is easy and left to the reader. �

The following definition is due to R. Hickman [12].

Definition 5.3. A distributive lattice D is called a strong free distributive extension of an semi-
lattice L if:

(1) there is a strong embedding e : L→ D;

(2) e [L] generates D as a lattice, i.e., for each a ∈ D there exists a non-empty finite subset X of
L such that a =

∨
e[X];

(3) if D1 is a distributive lattice and if f : L→ D1 is a strong homomorphism, then there exists
a unique lattice homomorphism f̄ : D → D1, such that f = f̄ ◦ e.

As was pointed out by Hickman [12], a strong free distributive extension of a semilattice, if
it exists, is unique up to isomorphism. He also proved that a semilattice is md-distributive if
and only if has a strong free distributive extension and the strong free distributive extension of a
md-distributive semilattice L is isomorphic to FIdf(L).

Now we introduce a slightly different definition of an extension of a semilattice, namely we omit
the third condition in the definition of strong free distributive extension. And we show in the next
theorem that the new definition is equivalent to the definition of strong free distributive extension,
in other words, we prove that the third condition in Definition 5.3 follows from the first two.

Definition 5.4. Let L be a semilattice. A pair 〈D, e〉, where D is a distributive lattice and e a
strong embedding from L to D, is a distributive lattice envelope of L if for every a ∈ D there is a
non-empty finite subset X ⊆ L such that a =

∨
e[X].

Theorem 5.5. Let L be a semilattice. Then 〈D, e〉 is a distributive lattice envelope of L if and
only if D is a strong free distributive extension.

P r o o f. Assume that 〈D, e〉 is a distributive lattice envelope of L. Let D1 be a distributive
lattice and f : L → D1 a strong homomorphism. We prove that there exists a unique lattice
homomorphism f̄ : D → D1, such that f = f̄ ◦ e.

Let a, b ∈ D. Then there exist finite subsets {x1, . . . , xn} and {y1, . . . , yk} of L such that
a = e(x1) ∨ · · · ∨ e(xn) and b = e(y1) ∨ · · · ∨ e(yk). Suppose that a = b, i.e.,

e(x1) ∨ · · · ∨ e(xn) = e(y1) ∨ · · · ∨ e(yk).

So,

[e(x1)) ∩ · · · ∩ [e(xn)) = [e(y1)) ∩ · · · ∩ [e(yk)) .

Then,

[e(x1)) ∩ · · · ∩ [e(xn)) ⊆ [e(yj))

for every 1 ≤ j ≤ k. As e is a strong embedding, [x1) ∩ · · · ∩ [xn) ⊆ [yj) for every 1 ≤ j ≤ k. As f
is a strong homomorphism,

[f(x1)) ∩ · · · ∩ [f(xn)) ⊆ [f(yj))

1081

Authenticated | lucianogonzalez@exactas.unlpam.edu.ar author's copy
Download Date | 9/24/17 3:46 PM



SERGIO ARTURO CELANI — LUCIANO JAVIER GONZÁLEZ

for every 1 ≤ j ≤ k and thus

[f(x1)) ∩ · · · ∩ [f(xn)) ⊆ [f(y1)) ∩ · · · ∩ [f(yk)) .

With a similar argument we can show the reverse inclusion. So,

[f(x1)) ∩ · · · ∩ [f(xn)) = [f(y1)) ∩ · · · ∩ [f(yk)) ,

i.e.,
f(x1) ∨ · · · ∨ f(xn) = f(y1) ∨ · · · ∨ f(yk).

Hence, we can define a map f̄ : D → D1 by

f̄(a) = f(x1) ∨ · · · ∨ f(xn),

when a = e(x1) ∨ · · · ∨ e(xn) for some x1, . . . , xn ∈ L. It is easy to see that f̄ is a lattice
homomorphism from D to D1 and that f = f̄ ◦ e. We prove that f̄ is unique. Suppose that
there exists other map g : D → D1 such that f = g ◦ e. Let a ∈ D. Then there exists a finite
{x1, . . . , xn} ⊆ L such that a = e(x1) ∨ · · · ∨ e(xn). So,

g(a) = g(e(x1) ∨ · · · ∨ e(xn)) = g(e(x1)) ∨ · · · ∨ g(e(xn))

= f(x1) ∨ · · · ∨ f(xn) = f̄(e(x1)) ∨ · · · ∨ f̄(e(xn))

= f̄(e(x1) ∨ · · · ∨ e(xn)) = f̄(a).

Lastly, it is straightforward prove the implication from right to left. This completes the proof. �

From the previous theorem we can conclude that if L is a semilattice and 〈D, e〉 is a distributive
lattice envelope of L, then for every distributive lattice D1 and for every strong homomorphism
f : L→ D1 there exists a unique lattice homomorphism f̄ : D → D1 such that f = f̄ ◦ e. Now we
prove that certain properties of f are preserved by f̄ .

Lemma 5.6. Let L be a semilattice and 〈D, e〉 a distributive lattice envelope of L. Let D1 be a
distributive lattice and let f : L→ D1 be a strong homomorphism.

(1) If f is an embedding, then f̄ is an embedding.

(2) If f is onto, then f̄ is onto.

P r o o f. (1) Let a, b ∈ D be such that f̄(a) = f̄(b). Then there exist two finite subsets {x1, . . . , xn}
and {y1, . . . , yk} of L such that a = e(x1) ∨ · · · ∨ e(xn) and b = e(y1) ∨ · · · ∨ e(yk). So f̄(a) =
f(e(x1)∨· · ·∨e(xn)) = f(e(y1)∨· · ·∨e(yk)) = f̄(b). As f is a strong homomorphism we have that

f(e(x1)) ∨ · · · ∨ f(e(xn)) = f(e(y1)) ∨ · · · ∨ f(e(yk))

and consequently

[f(e(x1))) ∩ · · · ∩ [f(e(xn)) = [f(e(y1))) ∩ · · · ∩ [f(e(yk)) .

As
[f(e(x1))) ∩ · · · ∩ [f(e(xn)) ⊆ [f(e(yj)))

for each 1 ≤ j ≤ k and f is a strong embedding, we obtain that

[e(x1)) ∩ · · · ∩ [e(xn)) = [e(x1) ∨ · · · ∨ e(xn)) ⊆ [e(yj))

for each 1 ≤ j ≤ k. So, e(yj) ≤ e(x1) ∨ · · · ∨ e(xn) for each 1 ≤ j ≤ k and hence

e(y1) ∨ · · · ∨ e(yk) ≤ e(x1) ∨ · · · ∨ e(xn).

By a similar argument we obtain that

e(x1) ∨ · · · ∨ e(xn) ≤ e(y1) ∨ · · · ∨ e(yk).

Thus, a = b. Therefore f̄ is an embedding.
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(2) It is easy and left to the reader. �

We finish this section by showing a correspondence between (prime) Frink-ideals of a md-semi-
lattice and (prime) ideals of its distributive lattice envelope. And from this, it follows a corre-
spondence between optimal filters of the md-semilattice and prime filters of its distributive lattice
envelope.

Let L be an md-semilattice and 〈D, e〉 its distributive lattice envelope. Without loss of generality
we can assume that L is a sub-semilattice of D with e the identity map. So, by Definition 5.4, we
have the following properties:

(P1) for all a1, . . . , an, a ∈ L,

[a1)L ∩ · · · ∩ [an)L ⊆ [a)L ⇐⇒ [a1)D ∩ · · · ∩ [an)D ⊆ [a)D;

(P2) for every a ∈ D there is a non-empty finite subset X ⊆ L such that a =
∨
X.

Let us denote by IdD(X) the ideal of D generated by a subset X ⊆ D.

Theorem 5.7. Let L be an md-semilattice and D its distributive lattice envelope.

(1) If J is a (prime) ideal of D, then J ∩ L is a (prime) Frink-ideal of L and J = IdD(J ∩ L).
Moreover, for every Frink-ideal I of L, I = IdD(I) ∩ L.

(2) If I is a prime Frink-ideal of L, then IdD(I) is a prime ideal of D.

P r o o f. (1) Let J be an ideal of D. Let a1, . . . , an ∈ J ∩ L and let a ∈ L be such that [a1)L ∩
· · · ∩ [an)L ⊆ [a)L. So, [a1)D ∩ · · · ∩ [an)D ⊆ [a)D and this implies that a ∈ J ∩ L. Hence J ∩ L
is a Frink-ideal of L. It is clear that IdD(J ∩ L) ⊆ J . Let x ∈ J . So, there is a non-empty
finite subset A of L such that x =

∨
A. Then A ⊆ J ∩ L and hence x ∈ IdD(J ∩ L). Therefore

J = IdD(J ∩ L). It is straightforward to check directly that if J is a prime ideal of D then J ∩ L
is a prime Frink-ideal of L. Finally, by Property (P1) in the previous paragraph to the theorem,
it is not hard to check that for every Frink-ideal I of L, I = IdD(I) ∩ L.

(2) Let I be a prime Frink-ideal of L and let x∧ y ∈ IdD(I). Thus, by Property (P2), there are
non-empty finite subsets A,B ⊆ L such that x =

∨
A and y =

∨
B. Since x ∧ y =

∨
A ∧

∨
B =∨

{a ∧ b : a ∈ A and b ∈ B} ∈ IdD(I), it follows by (1) that a ∧ b ∈ I for all a ∈ A and b ∈ B.
Suppose towards a contradiction that A * I and B * I. So, there are a ∈ A r I and b ∈ B r I.
Since a, b /∈ I, it follows by primality of I that a ∧ b /∈ I, which is a contradiction. Then A ⊆ I
or B ⊆ I and hence x =

∨
A ∈ IdD(I) or y =

∨
B ∈ IdD(I). Therefore IdD(I) is a prime ideal

of D. �

Therefore, given an md-semilattice L and its distributive lattice envelope D, we can conclude
that the set of Frink-ideals of L and the set of ideals of D, both ordered with the set-theoretic
inclusion, are order-isomorphic and the set of prime Frink-ideals is also order-isomorphic to the
set of prime ideals. Consequently, by Lemma 3.6, we obtain that the set of optimal filters of L is
order-isomorphic to the set of prime filters of D.
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