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PERFECT HILBERT ALGEBRAS

A b s t r a c t. In [S. Celani and L. Cabrer. Duality for finite Hilbert alge-

bras. Discrete Math., 305(1-3):74–99, 2005.] the authors proved that every finite

Hilbert algebra A is isomorphic to the Hilbert algebra HK(X) = {w ⇒i v : w ∈
K and v ⊆ w}, where X is a finite poset, K is a distinguished collection of subsets

of X, and the implication ⇒i is defined by: w ⇒i v = {x ∈ X : w ∩ [x) ⊆ v},
where [x) = {y ∈ X : x ≤ y}. The Hilbert implication on HK(X) is the usual

Heyting implication ⇒i (as just defined) given on the increasing subsets. In the

same article, Celani and Cabrer extended this representation to a full categorical

duality. The aim of the present article is to obtain an algebraic characterization

of the Hilbert algebras HK(X) for all structures 〈X,≤,K〉 defined by Celani and

Cabrer but not necessarily finite. Then, we shall extend this representation to a

full dual equivalence generalizing the finite setting given by Celani and Cabrer.

1 Introduction and preliminaries

A Hilbert algebra is an algebra 〈A,→, 1〉 of type (2,0) satisfying the following conditions:
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(H1) x→ (y → x) = 1;

(H2) (x→ (y → z))→ ((x→ y)→ (x→ z)) = 1;

(H3) if x→ y = 1 and y → x = 1, then x = y.

It is well-known that the class of Hilbert algebras forms a variety (see Diego [11]) in

the sense of universal algebra. The variety of Hilbert algebras has deserved a lot of

attention in the setting of algebraic logic since it is the algebraic counterpart (in the

sense of Algebraic Logic, see [16]) of the implicative fragment of intuitionistic logic. In

particular, in [8], the authors presented a representation and a full categorical duality for

the class of finite Hilbert algebras by means of structures 〈X,≤,K〉, where 〈X,≤〉 is a

finite partially ordered set and K is a distinguished collection of subsets of X. We shall

call these structures H-sets.

Our first aim (Section 2) will be to characterize algebraically the Hilbert algebras that

are isomorphic to Hilbert algebras of the form A(X) = {w ⇒ v : w ∈ K and v ⊆ w},
with w ⇒ v = {x ∈ X : w ∩ (x] ⊆ v} and where (x] = {y ∈ X : y ≤ x}, for some

H-set 〈X,≤,K〉 (but not necessarily finite). We shall call these Hilbert algebras perfect1.

In [8] the authors used completely irreducible deductive systems to attain their aims.

They proved that in the finite case there is a dual order-isomorphism between completely

irreducible deductive systems and irreducible elements. In the present paper, we use the

concept of irreducible elements instead of completely irreducible deductive systems. Thus,

we work dually in the framework of decreasing subsets instead of increasing subsets as

was done in [8]. As we shall notice below (see on page 31), if 〈X,≤,K〉 is an H-set, then

〈X,≥,K〉 is also an H-set, and the Hilbert algebra HK(X) (as defined in the abstract, or

see on page 31) defined by the H-set 〈X,≤,K〉 coincides with the Hilbert algebra A(X)

(see also on page 31) defined by the H-set 〈X,≥,K〉.
In Section 3, we present some examples of perfect Hilbert algebras. Section 4 is devoted

to develop a full dual categorical equivalence between the category of perfect Hilbert

algebras and certain algebraic morphisms and the category of H-sets and H-functional

morphism (see [8] or Definition 4.1).

Let us overview the representation given in [8] for finite Hilbert algebras. For this, we

need to introduce some concepts and results which will be needed throughout the article.

Thus, firstly, we will give all we need and then we overview the representation given in

[8].

Let 〈X,≤〉 be a poset. Let A ⊆ X. Let (A]X = {x ∈ X : x ≤ a for some a ∈ A}.
For every x ∈ X, we write (x]X instead of ({x}]X . We drop the subscript in (A]X when

confusion is unlikely, and we write (A] simply. A subset A ⊆ X is called decreasing if A =

1The adjective perfect is chosen by likeness with the framework of lattice. In [12], a distributive lattice
is called perfect if it is isomorphic to a set-theoretic lattice based on the collection of decreasing subsets
of some partial order.
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(A]. We denote by Pd(X) the collection of all decreasing subsets of X. It is well-known

that 〈Pd(X),∩,∪,⇒, ∅, X〉 is a complete Heyting algebra, where for all U, V ∈ Pd(X),

U ⇒ V = {x ∈ X : U∩(x] ⊆ V }. Thus, in particular, 〈Pd(X),⇒, X〉 is a Hilbert algebra.

Notice that for all A,B ⊆ X, not necessarily decreasing subsets, the implication

A⇒ B = {x ∈ X : A ∩ (x] ⊆ B} (1)

is always a decreasing subset of X.

Dually, we have the concept of increasing subset and the Heyting algebra 〈Pi(X),∩,∪,
⇒i, ∅, X〉 over the collection Pi(X) of all increasing subsets of the poset X with the

implication

U ⇒i V = {x ∈ X : U ∩ [x) ⊆ V }. (2)

Notice that the set U ⇒i V is always an increasing subset for U and V not necessarily

increasing.

Let 〈A,→, 1〉 be a Hilbert algebra. A partial order can be defined on A as follows:

a ≤ b if and only if a→ b = 1. A subset F ⊆ A is called implicative filter (also known as

deductive system) if 1 ∈ F , and if a, a→ b ∈ F , then b ∈ F . Let us denote by ImFi(A) the

collection all implicative filters of A. It is well-known that ImFi(A) is an algebraic closure

system, where the implicative filter generated by a set X is characterized as follows:

〈X〉 = {a ∈ A : ∃x1, . . . , xn ∈ X(x1 → (x2 → (. . . (xn → a) . . . ))) = 1}

It follows that 〈{a}〉 = [a). A useful property of the implicative filters generated by a set

is the following. If F is an implicative filter and x1, . . . , xn ∈ A, then

〈F, x1, . . . , xn〉 = 〈F ∪ {x1, . . . , xn}〉 = {a ∈ A : x1 → (x2 → (. . . (xn → a) . . . )) ∈ F}

(see [11]).

A proper implicative filter F is called irreducible when for any D1, D2 ∈ ImFi(A) such

that D1 ∩ D2 = F , it follows that D1 = F or D2 = F . We say that F is completely

irreducible if for any family {Di : i ∈ I} ⊆ ImFi(A) such that F = ∩{Di : i ∈ I}, it

follows that F = Di for some i ∈ I. We denote by CIrr(A) the collection of all completely

irreducible implicative filter of A.

The proofs of the following three results can be found in [11, 3, 14].

Theorem 1.1. Let A be a Hilbert algebra and F ∈ ImFi(A). Then the following are

equivalent:

1. F is irreducible.

2. If a, b /∈ F , then there is c /∈ F such that a, b ≤ c.
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3. If a, b /∈ F , then there is c /∈ F such that a→ c, b→ c ∈ F .

Theorem 1.2. Let A be a Hilbert algebra and F ∈ ImFi(A). Then the following are

equivalent:

1. F ∈ CIrr(A).

2. There exists a /∈ F such that if F  D ∈ ImFi(A), then a ∈ D.

3. There exists a /∈ F such that b→ a ∈ F , for all b /∈ F .

Let F ∈ ImFi(A) and a ∈ A. We say that F is maximal relative to a if F is a maximal

element in the set {D ∈ ImFi(A) : a /∈ D} (maximal with respect to the set inclusion).

Theorem 1.3. Let A be a Hilbert algebra. Then:

1. If F ∈ ImFi(A) and a /∈ F , then there exists P ∈ CIrr(A) maximal relative to a

such that F ⊆ P .

2. If a, b ∈ A are such that a � b, then there exists P ∈ CIrr(A) maximal relative to b

such that a ∈ P .

3. If F ∈ ImFi(A) and a → b /∈ F , then there exists P ∈ CIrr(A) maximal relative to

b such that a ∈ P and F ⊆ P .

Let A be a Hilbert algebra. Following the notation of [8], we define the relation

KA ⊆ CIrr(A)× A as follows:

(P, a) ∈ KA if and only if P is maximal relative to a.

Considering the poset 〈CIrr(A),⊆〉, it defines the map ϕ : A→ Pi(CIrr(A)) as follows:

ϕ(a) = {P ∈ CIrr(A) : a ∈ P}.

Theorem 1.4 ([11]). The map ϕ : A → Pi(CIrr(A)) is a Hilbert embedding into

〈Pi(CIrr(A)),⇒i,CIrr(A)〉.

Now we are ready to establish the representation for the finite Hilbert algebras given

in [8]. For the missing details, we refer the reader to [8]. We begin with the definition of

the dual structures of the finite Hilbert algebras.

Definition 1.5 ([8]). A triple 〈X,≤,K〉 is called an H-set2 if:

2In [8], the H-sets are called H-spaces, but the term H-space was also used later in [9] to refer to
certain ordered topological spaces which were used to obtain a duality for the algebraic category of
Hilbert algebras. Thus, we prefer the term H-set instead of H-space because the definition in [8] and here
there is not a topology involved.
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(HS1) 〈X,≤〉 is a poset.

(HS2) ∅ 6= K ⊆ P(X) such that {x} ∈ K, for all x ∈ X.

(HS3) For all w ∈ K, w is an antichain of X.

Given an H-set 〈X,≤,K〉, it defines the set

H(X) = {w ⇒i v : w ∈ K and v ⊆ w},

where⇒i is defined as in (2). In [8], the authors proved that 〈H(X),⇒i, X〉 is an Hilbert

algebra. Actually, they showed that 〈H(X),⇒i, X〉 is a subalgebra of the Hilbert algebra

〈Pi(X),⇒i, X〉. One of the main results of [8] is that every finite Hilbert algebra 〈A,→, 1〉
is isomorphic to a Hilbert algebra 〈H(X),⇒i, X〉 for some finite H-set 〈X,≤,K〉. Let us

sketch this. Let A be a finite Hilbert algebra. Let LA = {K−1
A (a) : a ∈ A}. Then:

Theorem 1.6 ([8]). The structure 〈CIrr(A),⊆,LA〉 is a finite H-set, and the map

ϕ : A→ H(CIrr(A)) is an isomorphism.

2 Characterization

In this section, we present the algebraic conditions characterizing the dual Hilbert algebras

coming from the H-sets. As we mentioned above, we will work with irreducible elements

instead of completely irreducible implicative filters, thus we need to consider the algebra

of decreasing subsets Pd(X) for posets instead of the algebra of increasing subsets. From

now on, given an H-set 〈X,≤,K〉, we define the Hilbert algebra 〈A(X),⇒, X〉 as follows:

A(X) = {w ⇒ v : w ∈ K and v ⊆ w}

where w ⇒ v is defined as in (1). Notice that if 〈X,≤,K〉 is an H-set, then 〈X,≥,K〉
is also an H-set. Hence, the Hilbert algebra A(X) given by 〈X,≤,K〉 coincide with the

Hilbert algebra H(X) given by 〈X,≥,K〉.
We begin presenting the basic notion with what we shall work: irreducible element.

Definition 2.1. Let 〈A,→, 1〉 be a Hilbert algebra. An element p 6= 1 of A is called

irreducible if for each a ∈ A, a ≤ p or a → p = p. We denote by Irr(A) the set of all

irreducible elements of A.

Proposition 2.2 ([8]). Let A be a Hilbert algebra and p ∈ A. Then, the following are

equivalent.

1. p is irreducible.

2. (p]c is an implicative filter.
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Actually, if p is an irreducible element, then (p]c is a completely irreducible implicative

filter of A. In the finite case, the completely irreducible implicative filters are exactly of

the form (p]c, for p ∈ A. Hence, considering the order in A restricted to Irr(A), it follows

that 〈Irr(A),≤〉 is dual order-isomorphic with 〈CIrr(A),⊆〉.
Let 〈A,→, 1〉 be a Hilbert algebra. Let us consider the set Irr(A) ordered under the

partial order of A. For every a ∈ A, let MA(a) be the set of minimals elements of the

subset {p ∈ Irr(A) : a ≤ p} (ordered under the natural partial order given by A). That

is,

MA(a) = Min{p ∈ Irr(A) : a ≤ p}.

Definition 2.3. A perfect Hilbert algebra is a Hilbert algebra 〈A,→, 1〉 satisfying the

following conditions:

(S) For all a, b ∈ A y p ∈ Irr(A), if a → b ≤ p, then there exists q ∈ Irr(A) such that

q ≤ p, a � q and b ≤ q.

(D) For every a ∈ A, a =
∧
{p ∈ Irr(A) : a ≤ p}.

(M) For all a ∈ A and p ∈ Irr(A), if a ≤ p, then there exists q ∈ MA(a) such that q ≤ p.

(C) For each a ∈ A and v ⊆ MA(a), there exists
∧
v in A.

(I) For each a ∈ A and v ⊆ MA(a), if p ∈ Irr(A) and
∧
v ≤ p, then there is q ∈ v such

that q ≤ p.

Proposition 2.4. If 〈A,→, 1〉 is a Hilbert algebra satisfying conditions (D) and (M),

then a =
∧

MA(a), for every a ∈ A.

Proof. Let a ∈ A. It is clear that a is a lower bound of MA(a). Let b be a lower

bound of MA(a). Let p ∈ Irr(A) be such that a ≤ p. By (M), there is q ∈ MA(a) such

that q ≤ p. Thus b ≤ q ≤ p. That is, b ≤ p for all p ∈ Irr(A) such that a ≤ p. Then, by

(D), b ≤
∧
{p ∈ Irr(A) : a ≤ p} = a. Hence, a =

∧
MA(a). �

Example 2.5. We know that the implicative reduct of a Boolean algebra B is a

Hilbert algebra (actually, it is a Tarski algebra, see Definition 3.11) with the implication

given by a → b = ¬a ∨ b. Moreover, an element b ∈ B is irreducible (Def. 2.1) if and

only if b is a co-atom (equivalently meet-irreducible) of B, see [17]. Hence, any atomless

Boolean algebra is an example of a Hilbert algebra which is not perfect, because it does

not satisfy condition (D). Thus, the class of perfect Hilbert algebras is a proper subclass

of the variety of Hilbert algebras. Moreover, the class of perfect Hilbert algebras is not a

quasivariety, because it is not closed under subalgebra. See Example 3.20.

Now we proceed to prove that 〈A(X),⇒, X〉 is a perfect Hilbert algebra for every H-set

〈X,≤,K〉. To attain this, we show that there is a nice characterization of the irreducible

elements of the Hilbert algebras A(X) for H-sets 〈X,≤,K〉.
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Proposition 2.6. Let 〈X,≤,K〉 be an H-set. Then Irr(A(X)) = {[x)c : x ∈ X}.

Proof. Let x ∈ X. Notice that [x)c = {x} ⇒ ∅. Thus, by (HS2), we obtain that

[x)c ∈ A(X). Now let us see that [x)c is an irreducible element of the Hilbert algebra

A(X). Let u ∈ A(X). Suppose that u * [x)c. Then, there is y ∈ u such that x ≤ y. Since

u is a decreasing subset of X, we have that x ∈ u. We need to show that u⇒ [x)c = [x)c.

Since A(X) is a Hilbert algebra, we know that [x)c ⊆ u⇒ [x)c. Let now z ∈ u⇒ [x)c, and

suppose that z /∈ [x)c. Then u ∩ (z] ⊆ [x)c and x ≤ z. Thus x ∈ u ∩ (z]. Hence x ∈ [x)c,

which is a contradiction. Hence u ⇒ [x)c ⊆ [x)c. Then u ⇒ [x)c = [x)c. Therefore, we

have proved that {[x)c : x ∈ X} ⊆ Irr(A(X)).

Let u ∈ Irr(A(X)). Thus u = w ⇒ v for some w ∈ K and v ⊆ w. Since u 6= X, it

follows that v 6= w. Let x ∈ w \ v. Thus x /∈ u. Given that u is decreasing subset, we

have that u ⊆ [x)c. Suppose that [x)c * u. Since u is an irreducible element of A(X),

it follows that [x)c ⇒ u = u. Then x /∈ [x)c ⇒ u. Thus [x)c ∩ (x] * u. Let y ≤ x such

that x � y and y /∈ u. So y /∈ w ⇒ v. Then w ∩ (y] * v. Let z ∈ w be such that

z ≤ y and z /∈ v. We have that z, x ∈ w and z ≤ y < x, but this is a contradiction

because w is an antichain of X. Hence, we obtain that [x)c ⊆ u. Therefore u = [x)c.

Then Irr(A(X)) ⊆ {[x)c : x ∈ X}. �

Proposition 2.7. Let 〈X,≤,K〉 be an H-set. Let u = w ⇒ v ∈ A(X) with w ∈ K
and v ⊆ w. Then

MA(X)(u) = {[x)c : x ∈ w \ u}.

Proof. Let y ∈ X. Assume first that [y)c ∈ MA(X)(u). Since u ⊆ [y)c, we have that

y /∈ u. Thus y /∈ w ⇒ v, that is, w ∩ (y] * v. Let z ∈ w such that z ≤ y and z /∈ v. Then

[z)c ⊆ [y)c. Since z ∈ w \ v, it follows that z /∈ u. Thus u ⊆ [z)c. We thus have that

u ⊆ [z)c and [z)c ⊆ [y)c. The minimality of [y)c implies that [z)c = [y)c. Then y = z ∈ w.

Hence y ∈ w \ u. Therefore, MA(X)(u) ⊆ {[x)c : x ∈ w \ u}.
Let now y ∈ w \ u. We need to show that [y)c is a minimal element of the set

{[x)c : u ⊆ [x)c}. Since y /∈ u and u is a decreasing subset of X, we have that u ⊆ [y)c.

Let z ∈ X be such that u ⊆ [z)c and [z)c ⊆ [y)c. We need to prove that [z)c = [y)c.

Given that [z)c ⊆ [y)c, we have z ≤ y. Since u ⊆ [z)c, it follows that z /∈ u = w ⇒ v.

Thus w ∩ (z] * v. Let x′ ∈ w be such that x′ ≤ z and x′ /∈ v. Thus x′ ≤ z ≤ y and

x′, y ∈ w. By (HS3), it follows that x′ = z = y. Then [z)c = [y)c. Hence [y)c ∈ MA(X)(u).

Therefore, {[x)c : x ∈ w \ u} ⊆ MA(X)(u). �
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Proposition 2.8. Let 〈X,≤,K〉 be an H-set. Then 〈A(X),⇒, X〉 is a perfect Hilbert

algebra.

Proof. We already know that 〈A(X),⇒, X〉 is a Hilbert algebra.

Recall that Irr(A(X)) = {[x)c : x ∈ X}.
(S) Let u1, u2 ∈ A(X) and x ∈ X. Assume that u1 ⇒ u2 ⊆ [x)c. Thus x /∈ u1 ⇒ u2.

That is, u1 ∩ (x] * u2. Let y ∈ u1 such that y ≤ x and y /∈ u2. Then it follows,

respectively, that u1 * [y)c, [y)c ⊆ [x)c, and u2 ⊆ [y)c. Hence, condition (S) holds.

(D) Let u ∈ A(X). Since u is a decreasing subset of X, it follows straightforwardly

that u =
⋂
{[x)c : u ⊆ [x)c}.

(M) Let u ∈ A(X) and x ∈ X be such that u ⊆ [x)c. Let w ∈ K and v ⊆ w be such

that u = w ⇒ v. Since x /∈ u = w ⇒ v, there is y ∈ w such that y ≤ x and y /∈ v. Thus

y ∈ w \ v. This implies that y /∈ u. Then y ∈ w \ u. By Proposition 2.7, we have that

[y)c ∈ MA(X)(u). Since y ≤ x, it follows that [y)c ⊆ [x)c.

(C) It is enough to show that, for every w ∈ K and v ⊆ w,
⋂
{[x)c : x ∈ v} ∈ A(X).

Let w ∈ K and v ⊆ w. Let us prove that
⋂
{[x)c : x ∈ v} = w ⇒ (w \ v).

Let y ∈
⋂
{[x)c : x ∈ v}. Thus x � y, for all x ∈ v. We need to prove that

w ∩ (y] ⊆ w \ v. Suppose that w ∩ (y] * w \ v. Thus, there is z ∈ w such that z ≤ y and

z /∈ w \ v. Then z ∈ v. Thus z � y, which is a contradiction. Then w∩ (y] ⊆ w \ v, which

implies that y ∈ w ⇒ (w \ v).

Let y ∈ w ⇒ (w \ v). Thus w ∩ (y] ⊆ w \ v. Suppose that y /∈
⋂
{[x)c : x ∈ v}. Then,

there is x ∈ v such that x ≤ y. Thus x ∈ w and x ∈ (y]. Hence x ∈ w \ v. Thus x /∈ v,

which is a contradiction. Then y ∈
⋂
{[x)c : x ∈ v}. Hence w ⇒ (w\v) ⊆

⋂
{[x)c : x ∈ v}.

(I) It is enough to show that for all {xi : i ∈ I} ∪ {x} ⊆ X, if
⋂

i∈I [xi)
c ⊆ [x)c, then

there is i0 ∈ I such that [xi0)
c ⊆ [x)c. This follows straightforwardly. �

Proposition 2.9. Let 〈A,→, 1〉 be a Hilbert algebra satisfying conditions (D) and (S).

Then, the map α : A→ Pd(Irr(A)) defined by

α(a) = {p ∈ Irr(A) : a � p}

is an embedding from 〈A→, 1〉 to the Hilbert algebra 〈Pd(Irr(A)),⇒, Irr(A)〉.

Proof. It is clear that for every a ∈ A, α(a) ∈ Pd(Irr(A)) and α(1) = Irr(A). From

condition (D) it follows that α is a one-to-one map. Let a, b ∈ A. We now show that

α(a → b) = α(a) ⇒ α(b). Let p ∈ α(a → b). Thus a → b � p. We need to prove that

α(a) ∩ (p]Irr(A) ⊆ α(b). Let q ∈ α(a) ∩ (p]Irr(A). This is, a � q and q ≤ p. Then a ∈ (q]cA
a→ b � q. Thus a→ b ∈ (q]cA. Since (q]cA is a deductive system, it follows that b ∈ (q]cA.
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Then q ∈ α(b). Hence p ∈ α(a) ⇒ α(b). Therefore, α(a → b) ⊆ α(a) ⇒ α(b). Let

p ∈ α(a) ⇒ (b). Thus α(p) ∩ (p]Irr(A) ⊆ α(b). Suppose that a → b ≤ p. By condition

(S), there is q ∈ Irr(A) such that q ≤ p, a � q and b ≤ q. Thus q ∈ α(a) ∩ (p]Irr(A) and

q /∈ α(b), which is a contradiction. Then q ∈ α(a→ b). Hence α(a)⇒ α(b) ⊆ α(a→ b).

�

Let us show how to obtain an H-set from an arbitrary Hilbert algebra. Let A be a

Hilbert algebra. Let KA = {MA(a) : a ∈ A}, where MA(a) = Min({p ∈ Irr(A) : a ≤ p}),
for every a ∈ A.

Proposition 2.10. Let A be a Hilbert algebra. Then, the triple 〈Irr(A),≤,KA〉 is an

H-set.

Proof. Recall that 〈Irr(A),≤〉 is the subposet of 〈A,≤〉, where ≤ is the natural order

on A. Notice that MA(1) ∈ KA, thus KA 6= ∅. Let p ∈ Irr(A). It is straightforward to see

that MA(p) = {p}. Then, (HS2) holds. And it is straightforward that MA(a) is antichain

of Irr(A), for every a ∈ A. Hence (HS3) holds. �

From Proposition 2.8 and the following theorem, we obtain the algebraic representation

promised.

Theorem 2.11. Let 〈A,→, 1〉 be a perfect Hilbert algebra. Then

〈A,→, 1〉 ∼= 〈A(Irr(A)),⇒, Irr(A)〉,

where A(Irr(A)) is the dual Hilbert algebra of the H-set 〈Irr(A),≤,KA〉.

Proof. By Proposition 2.9 we know that 〈A,→, 1〉 ∼= 〈α(A),⇒, Irr(A)〉. We show

that A(Irr(A)) = α(A).

Let a ∈ A. We show that α(a) = MA(a) ⇒ ∅. Let p ∈ α(a). Thus a � p. We need

to prove that MA(a) ∩ (p]Irr(A) = ∅. Suppose that there is q ∈ MA(a) ∩ (p]Irr(A). Thus

a ≤ q and q ≤ p. Then a ≤ p, which is a contradiction. Hence α(a) ⊆ MA(a) ⇒ ∅. Let

now p ∈ MA(a) ⇒ ∅. Thus MA(a) ∩ (p]Irr(A) = ∅. Suppose that a ≤ p. By (M), there is

q ∈ MA(a) such that q ≤ p. Thus q ∈ MA(a) ∩ (p]Irr(A), which is a contradiction. Then

p ∈ α(a). Hence MA(a)⇒ ∅ ⊆ α(a). That is, α(a) = MA(a)⇒ ∅ ∈ A(Irr(A)).

Let now u ∈ A(Irr(A)). Thus there is a ∈ A and v ⊆ MA(a) such that u = MA(a)⇒ v.

By (C),
∧
v there exists in A. Let us prove that MA(a) ⇒ v = α (

∧
v → a). Let

p ∈ MA(a)⇒ v. Thus MA(a) ∩ (p]Irr(A) ⊆ v. Suppose that
∧
v → a ≤ p. By (S), there is

q ∈ Irr(A) such that q ≤ p,
∧
v � q and a ≤ q. Since

∧
v � q, it follows that r � q, for

all r ∈ v. On the other hand, since a ≤ q, it follows by (M) that there is q′ ∈ MA(a) such

that q′ ≤ q. Then q′ ≤ p. Thus q′ ∈ MA(a) ∩ (p]Irr(A). Then q′ ∈ v. It follows that q′ � q,

which is a contradiction. Hence p ∈ α (
∧
v → a). Therefore, MA(a)⇒ v ⊆ α (

∧
v → a).
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Let now p ∈ α (
∧
v → a). Thus

∧
v → a � p. We need to show that p ∈ MA(a) ⇒ v.

Let q ∈ MA(a) ∩ (p]Irr(A). Thus a ≤ q and q ≤ p. Given that
∧
v → a � q, we have that∧

v → a ∈ (q]cA. Since (q]cA is a deductive system and a /∈ (q]cA, it follows that
∧
v /∈ (q]cA.

Thus
∧
v ≤ q. By (I), there is q′ ∈ v such that q′ ≤ q. Since q, q′ ∈ MA(a) (because

v ⊆ MA(a)), we obtain that q = q′ ∈ v. Thus, we have proved that MA(a) ∩ (p]Irr(A) ⊆ v.

Then, p ∈ MA(a)⇒ v. Hence α (
∧
v → a) ⊆ MA(a)⇒ v. This completes the proof. �

We summarize the previous results in the following corollary.

Corollary 2.12. The class of perfect Hilbert algebras coincides with the class of Hilbert

algebras A(X) for H-sets 〈X,≤,K〉.

3 Perfect Hilbert algebras are not so strange

In this section, we shall see that the class of perfect Hilbert algebras is not as strange as it

is looks. Indeed, we shall show that the class of perfect Hilbert algebras contains certain

well-known classes of Hilbert algebras.

3.1 Every finite Hilbert algebra is a perfect Hilbert algebra

We need the representation given in [8] and some further results. Let 〈X,≤,K〉 be an H-

set. Notice that we have two Hilbert algebras associated with 〈X,≤,K〉: 〈H(X),⇒i, X〉
(see on page 31) as a subalgebra of Pi(X), and 〈A(X),⇒, X〉 (see on page 31) as a

subalgebra of Pd(X).

Proposition 3.1. Let 〈X,≤,K〉 be an H-set. Let w1, w2 ∈ K. Then:

(1) If w1 ⇒i ∅ = w2 ⇒i ∅, then w1 = w2.

(2) If w1 ⇒ ∅ = w2 ⇒ ∅, then w1 = w2.

Proof. They are straightforward. �

Let 〈A,→, 1〉 be a finite Hilbert algebra. We already know that

〈A,→, 1〉 ∼= 〈H(CIrr(A),⇒i,CIrr(A)〉

and 〈A(Irr(A)),⇒, Irr(A)〉 is a perfect Hilbert algebra. In order to show that A is a perfect

Hilbert algebra, let us to prove that H(CIrr(A)) ∼= A(Irr(A)). The following result is the

key.

Proposition 3.2 ([8]). Let A be a finite Hilbert algebra. Then, CIrr(A) = {(p]c : p ∈
Irr(A)}.
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Notice that for every completely irreducible implicative filter (p]c of a finite Hilbert

algebra A and a ∈ A, it follows that

(p]c ∈ K−1
A (a) if and only if (p]c is maximal relative to a if and only if p ∈ MA(a).

Moreover, notice that the mapping K−1
A (a) 7→ MA(a) is one-to-one correspondence from

LA to KA.

Proposition 3.3 ([8]). Let A be a finite Hilbert algebra. Then H(CIrr(A)) = {K−1
A (a)⇒i

∅ : a ∈ A}.

Proposition 3.4. Let A be a finite Hilbert algebra. Then A(Irr(A)) = {MA(a)⇒ ∅ :

a ∈ A}.

Proof. By definition, it is clear that MA(a)⇒ ∅ ∈ A(Irr(A)), for all a ∈ A. Let now

u ∈ A(Irr(A)). Then, there is a ∈ A such that u = MA(a) ⇒ v for some v ⊆ MA(a).

Assume that v 6= ∅. Say v = {p1, . . . , pk}. Let b = p1 → (p2 → (. . . (pk → a) . . . )). Let

us prove that MA(a) ⇒ v = MA(b) ⇒ ∅. Let p ∈ MA(a) ⇒ v. Thus MA(a) ∩ (p] ⊆ v.

Suppose that p /∈ MA(b) ⇒ ∅. Thus, let q ∈ MA(b) such that q ≤ p. Then b /∈ (q]c.

Since (q]c is an implicative filter, it follows that a /∈ 〈(q]c, p1, . . . , pk〉. There exists a

completely irreducible implicative filter (s]c such that (s]c is maximal relative to a and

〈(q]c, p1, . . . , pk〉 ⊆ (s]c. Hence, s ∈ MA(a) and s ≤ q ≤ p. Then s ∈ v. It follows

that there is i such that s = pi ∈ (s]c, which is a contradiction. Thus p ∈ MA(b) ⇒ ∅.
Hence MA(a) ⇒ v ⊆ MA(b) ⇒ ∅. On the other hand, let now p ∈ MA(b) ⇒ ∅. Thus

MA(b)∩ (p] = ∅. Since A is finite, we have that b � p. Let q ∈ MA(a)∩ (p]. Then, a /∈ (q]c

and b ∈ (q]c. Thus, there is pi ∈ v such that pi /∈ (q]c. That is, pi ≤ q. Since pi, q ∈ v, it

follows that q = pi ∈ v. Hence MA(a) ∩ (p] ⊆ v. Therefore, MA(b)⇒ ∅ ⊆ MA(a)⇒ v. �

We need a further result before the main theorem of this subsection.

Proposition 3.5. Let A be a finite Hilbert algebra. Let a, b ∈ A. Then:

(1) K−1
A (a→ b)⇒i ∅ = (K−1

A (a)⇒i ∅)⇒i (K−1
A (b)⇒i ∅).

(2) MA(a→ b)⇒ ∅ = (MA(a)⇒ ∅)⇒ (MA(b)⇒ ∅).

Proof. (1) It follows from [8].

(2) (⊆) Let p ∈ MA(a→ b)⇒ ∅. Thus MA(a→ b)∩(p] = ∅. It follows that a→ b � p,

and thus a → b ∈ (p]c. Let q ∈ (MA(a) ⇒ ∅) ∩ (p]. Thus MA(a) ∩ (q] = ∅ and q ≤ p.

Then, a � q and (p]c ⊆ (q]c. We need to show that q ∈ MA(b) ⇒ ∅. Suppose that it is

not satisfied. Then there is s ∈ MA(b) ∩ (q]. Thus b ≤ s and s ≤ q. Then b /∈ (s]c and

(q]c ⊆ (s]c. Hence b /∈ (q]c. On the other hand, notice that a, a→ b ∈ (q]c. Then b ∈ (q]c,

which is a contradiction. Hence q ∈ MA(b)⇒ ∅. Therefore, MA(a→ b)⇒ ∅ ⊆ (MA(a)⇒
∅)⇒ (MA(b)⇒ ∅).
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(⊇) Let p ∈ (MA(a) ⇒ ∅) ⇒ (MA(b) ⇒ ∅). Thus (MA(a) ⇒ ∅) ∩ (p] ⊆ MA(b) ⇒ ∅.
We need to show that MA(a→ b) ∩ (p] = ∅. Suppose that there is q ∈ MA(a→ b) ∩ (p].

Thus a → b /∈ (q]c and q ≤ p. Since (q]c is an implicative filter, there is a (s]c ∈ CIrr(A)

such that (s]c is maximal relative to b, a ∈ (s]c and (q]c ⊆ (s]c. Thus s ∈ MA(b). Then

s /∈ MA(b)⇒ ∅. Let us show that s ∈ MA(a)⇒ ∅. Suppose that there is t ∈ MA(a)∩ (s].

Thus a /∈ (t]c and (s]c ⊆ (t]c. Then a /∈ (s]c, which is a contradiction. Hence s ∈ (MA(a)⇒
∅) ∩ (p]. Thus s ∈ MA(b)⇒ ∅, which is a contradiction. Then MA(a→ b) ∩ (p] = ∅, and

thus p ∈ MA(a→ b)⇒ ∅. Therefore, (MA(a)⇒ ∅)⇒ (MA(b)⇒ ∅) ⊆ MA(a→ b)⇒ ∅.
�

Now we are ready to prove the main result of this subsection.

Theorem 3.6. Every finite Hilbert algebra is a perfect Hilbert algebra.

Proof. Let A be a finite Hilbert algebra. Let Ψ: H(CIrr(A))→ A(Irr(A)) be defined

as follows: Ψ(K−1
A (a) ⇒i ∅) = MA(a) ⇒ ∅. By Propositions 3.1, 3.3, and 3.4, it follows

that Ψ is a well-defined one-to-one correspondence. Now we check that Ψ is a Hilbert

homomorphism. Let a, b ∈ A. By Proposition 3.5, we have

Ψ
(
(K−1

A (a)⇒i ∅)⇒i (K−1
A (b)⇒i ∅)

)
= Ψ

(
K−1

A (a→ b)⇒i ∅
)

= MA(a→ b)⇒ ∅ = (MA(a)⇒ ∅)⇒ (MA(b)⇒ ∅)

= Ψ
(
K−1

A (a)⇒i ∅
)
⇒ Ψ

(
K−1

A (b)⇒i ∅
)
.

Hence Ψ is an isomorphism from H(CIrr(A)) onto A(Irr(A)). Thus, A ∼= H(CIrr(A)) ∼=
A(Irr(A)). Therefore, A is a perfect Hilbert algebra. �

3.2 Hilbert algebras given by the order are perfect Hilbert algebras

Definition 3.7. A Hilbert algebra A is said to be given by the order if for every

a, b ∈ A,

a→ b =

{
1 if a ≤ b

b if a � b.

The class of Hilbert algebras given by the order was studied by several authors, see

for instance [15, 10, 4, 5].

Proposition 3.8 ([8]). Let A be a Hilbert algebra. Then the following are equivalent.

(1) A is a Hilbert algebra given by the order.

(2) Pi(A) \ {∅} = ImFi(A).
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(3) If p ∈ A \ {1}, then (p]c ∈ CIrr(A).

(4) If p ∈ A \ {1}, then p ∈ Irr(A).

(5) For every p ∈ A \ {1}, K−1
A (p) = {P}.

(6) For every p ∈ A \ {1}, MA(p) = {p}.

Theorem 3.9. Every Hilbert algebra given by the order is a perfect Hilbert algebra.

Proof. Let A be a Hilbert algebra given by the order. Thus, we have that for every

p ∈ A\{1}, MA(p) = {p}. Then, it is straightforward to verify that A satisfies conditions

(S), (D), (M), (C) and (I). Therefore, the class of perfect Hilbert algebras contains the

class of all Hilbert algebras given by the order. �

Corollary 3.10. Let A be a Hilbert algebra and 〈X,≤,K〉 its dual H-set. Then, A is

given by the order if and only if K = {{x} : x ∈ X}.

3.3 Every atomic and complete Tarski algebra is a perfect Hilbert algebra

Definition 3.11. A Tarski algebra (also known as implication algebras) is a Hilbert

algebra 〈A,→, 1〉 satisfying the identity (a→ b)→ b = (b→ a)→ a.

It is well-known that the class of Tarski algebras is the algebraic semantics of the

implicative fragment of the classical logic. Moreover, A with its associated order is a

join-semilattice, where a ∨ b := (a → b) → b is the supremum of all a and b in A. For

more details on Tarski algebras we refer the reader to [1, 16].

Definition 3.12. Let A be a Tarski algebra. An element a ∈ A \ {1} is called dual

atom if for any x ∈ A, a ≤ x implies that a = x or x = 1.

Proposition 3.13 ([7]). Let A be a Tarski algebra and a ∈ A. Then, a is a dual atom

if and only if a is irreducible.

Definition 3.14 ([7]). A Tarski algebra A is said to be complete if for every non-

empty subset D ⊆ A there exists the supremum
∨
D. A complete Tarski algebra A is

said to be atomic if for every element a 6= 1, there exists a subset G ⊆ Irr(A) such that

a =
∧
G.

Definition 3.15. An implicative filter P of a complete Tarski algebra A is called

completely prime if for every non-empty D ⊆ A, if
∨
D ∈ P , then D ∩ P 6= ∅.

Proposition 3.16 ([7]). Let A be a complete and atomic Tarski algebra. Then, an

implicative filter P is completely prime if and only if there exists p ∈ Irr(A) such that

P = (p]c.
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Proposition 3.17 ([7]). Let A be a complete and atomic Tarski algebra and P an

implicative filter of A. Then, P is completely prime if and only if P is maximal and

closed under existing infimum.

Theorem 3.18. If A is a complete and atomic Tarski algebra, then A is a perfect

Hilbert algebra.

Proof. Let A be a complete and atomic Tarski algebra.

(S) Let a, b ∈ A and p ∈ Irr(A). Suppose that a → b ≤ p. Thus a → b /∈ (p]c. By

Propositions 3.16 and 3.17, we have that (p]c is a maximal implicative filter. Then, by

Theorem 1.3 (3), it follows that a ∈ (p]c and b /∈ (p]c. Thus, p ∈ Irr(A) such that a � p

and b ≤ p.

(D) It follows by the atomic condition.

(M) Since for every p ∈ Irr(A), (p]c is maximal, it follows that MA(a) = {p ∈ Irr(A) :

a ≤ p}, for all a ∈ A. Then, condition (M) is straightforward.

(C) Since there exists the supremum of all non-empty subsets of A, it follows that

there exists the infimum of any subset of A bounded below. Hence, (C) holds.

(I) Let a ∈ A and v ⊆ MA(a). Let p ∈ Irr(A) and assume that
∧
v ≤ p. Thus∧

/∈ (p]c. By Proposition 3.17, there is q ∈ v such that q /∈ (p]c. Hence q ≤ p.

Therefore, A is a perfect Hilbert algebra. �

Proposition 3.19. Let A be a perfect Hilbert algebra and 〈X,≤ K〉 its dual H-set.

Then, A is a complete and atomic Tarski algebra if and only if ≤ is the equality, that is,

a ≤ b ⇐⇒ a = b.

Proof. Let A be a complete and atomic Tarski algebra. Since Irr(A) is exactly the

set of all dual atoms of A, it follows that the order ≤ of A restricted to A is the equality.

Now suppose that the H-set 〈X,≤,K〉 is such that ≤ is the equality. It follows, for every

u, v ⊆ X, that u ⇒ v = uc ∪ v. Then, A ∼= A(X) = {wc ∪ v : w ∈ K and v ⊆ w} is a

complete and atomic Tarski algebra, see [7, Thm. 15]. �

Example 3.20. As we mentioned before, the class of perfect Hilbert algebras is not a

quasivariety because it is not closed under subalgebra. For instance, the power set of real

numbers P(R) is a complete atomic Boolean algebra, and thus it is in particular a complete

and atomic Tarski algebra with the Boolean implication. Hence P(R) is a perfect Hilbert

algebra. Now the interval algebra of R (see for instance [13, pp. 118]) is an atomless

Boolean subalgebra of P(R). Since co-atoms and irreducible elements are equivalent (see

Example 2.5), the interval algebra is a subalgebra of the perfect Hilbert algebra P(R) but

without irreducible elements. Hence, interval algebra is a Hilbert algebra but not perfect.
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4 Morphisms and dual equivalence

In this section, we extend the representation of perfect Hilbert algebras through H-sets to

a full categorical dual equivalence. Thus, we need to establish who will be the morphisms

between H-sets and between perfect Hilbert algebras. For H-sets, we shall consider the

morphisms used in [8] to establish their duality in the finite case. The next definition

is not exactly as in [8], in fact, it is dual, and this is due that we are using irreducible

elements instead of completely irreducible implicative filters as in [8].

Definition 4.1 ([8]). Let 〈X1,≤1,K1〉 and 〈X2,≤2,K2〉 be two H-sets. A relation

R ⊆ X1 ×X2 is called H-functional if the following conditions are satisfied:

(HF1) If (x, y) ∈ R, then there is x′ ∈ X1 such that x′ ≤ x and R(x′) = (y].

(HF2) If x ≤ x′, then R(x) ⊆ R(x′). If y ≤ y′, then R−1(y′) ⊆ R−1(y).

(HF3) For all u ∈ H(X2), hR(u) := {x ∈ X1 : R(x) ⊆ u} ∈ H(X1).

By [8], we have that the class of H-sets with H-functional relations is a category, where

the composition ◦ is the usual composition of relations and the dual order ≥ in each H-

set 〈X,≤,K〉 plays the role of the identity morphism. We denote by HS the category of

H-sets and H-functional relations. To be clear and avoid misunderstood, we consider the

composition of relations as follows: for relations R ⊆ X×Y and S ⊆ Y ×Z, (x, z) ∈ R◦S
if and only if there exists y ∈ Y such that (x, y) ∈ R and (y, z) ∈ S.

We now introduce the morphisms between perfect Hilbert algebras which will be dual

to the H-functional relations.

Definition 4.2. Let A and B be perfect Hilbert algebras. A homomorphism h : A→
B is called perfect if the following conditions holds:

(WH1) For all a ∈ A and q ∈ Irr(B), if h(a) ≤ q, then there is p ∈ Irr(A) such that a ≤ p

and h(p) ≤ q.

(WH2) For all (p, q) ∈ Irr(A) × Irr(B), if h(p) ≤ q, then there is q′ ∈ Irr(B) such that

q′ ≤ q and h−1[(q′]] = (p].

Example 4.3. Let A and B be finite Hilbert algebras. Then, every homomorphism

h : A→ B is perfect. In fact:

(WH1) Suppose that h(a) ≤ q. Then a /∈ h−1[(q]c]. Since B is finite and q ∈ Irr(B),

it follows that (q]c is an implicative filter of B. Then, h−1[(q]c] is an implicative filter of

A. Hence, there is a completely irreducible implicative filter P of A such that a /∈ P and

h−1[(q]c] ⊆ P . Since A is finite, it follows that there is p ∈ Irr(A) such that P = (p]c.

Therefore, a ≤ p and h(p) ≤ q.
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(WH2) Suppose that h(p) ≤ q. Thus h−1[(q]c] ⊆ (p]c. Since (p]c and (q]c are completely

irreducible implicative filters of A and B, respectively, it follows by [6, Thm. 3.3] that

there is an irreducible implicative filter Q′ of B such that (q]c ⊆ Q′ and h−1[Q′] = (p]c.

Since B is finite, Q′ = (q′]c. Hence q′ ≤ q and h−1[(q′]] = (p].

Example 4.4. Every homomorphism between Hilbert algebras given by the order is

perfect. Indeed, let A and B be Hilbert algebras given by the order and h : A→ B be a

homomorphism. Recall that Irr(A) = A \ {1} and Irr(B) = B \ {1}. Condition (WH1)

is straightforward taking p := a. Let us prove (WH2). Let (p, q) ∈ Irr(A) × Irr(B) be

such that h(p) ≤ q. Let q′ := h(p) ∈ Irr(A). Clearly q′ ≤ q. It is straightforward that

(p] ⊆ h−1[(q′]]. Let now a ∈ h−1[(q′]]. Thus h(a) ≤ q′ = h(p). Then h(a) → h(p) = 1.

If a � p, then a → p = p. It follows that 1 = h(a) → h(p) = h(p) ≤ q, which is a

contradiction. Hence a ∈ (p]. Therefore, h−1[(q′]] = (p].

Example 4.5. A Hilbert homomorphism h : A→ B between perfect Hilbert algebras

is not necessarily perfect. Let X be an infinity set and 2 = {0, 1} the two-elements chain.

We consider the atomic and complete Boolean algebras P(X) and 2. Hence, they are

perfect Hilbert algebras. Recall that the irreducible elements of P(X) are exactly its

co-atoms. Then Irr(P(X)) = {X \ {x} : x ∈ X} and Irr(2) = {0}. Since X is infinity,

there exists an ultrafilter U of P(X) such that Irr(P(X)) ⊆ U . Let h : P(X) → 2 be

given by h(A) = 1 if and only if A ∈ U . It is clear that h is a Boolean homomorphism,

and thus h is a Hilbert homomorphism. But h is not perfect, because it does not satisfy

(WH1). Indeed, let A /∈ U . Thus h(A) = 0. However there is not irreducible element

p = X \ {x} of P(X) such that h(p) ≤ 0, because Irr(P(X)) ⊆ U .

Proposition 4.6. Let h : A → B and g : B → C be perfect homomorphisms between

perfect Hilbert algebras. Then, g ◦ h : A→ C is a perfect homomorphism.

Proof. (WH1) Let a ∈ A and s ∈ Irr(C) be such that (g ◦ h)(a) ≤ s. By (WH1) for

g, there is q ∈ Irr(B) such that h(a) ≤ q and g(q) ≤ s. Now by (WH1) for h, there is

p ∈ Irr(A) such that a ≤ p and h(p) ≤ q. Hence, there is p ∈ Irr(A) such that a ≤ p and

(g ◦ h)(p) ≤ s.

(WH2) Let p ∈ Irr(A) and s ∈ Irr(C), and assume that (g ◦ h)(p) ≤ s. Then, by

(WH1) for g, there is q ∈ Irr(B) such that h(p) ≤ q and g(q) ≤ s. Now by (WH2) for h,

there is q′ ∈ Irr(B) such that q′ ≤ q and h−1 [(q′]] = (p]. Thus g(q′) ≤ s. By (HW2) for g,

there is s′ ∈ Irr(C) such that s′ ≤ s and g−1 [(s′]] = (q′]. Hence, s′ ∈ Irr(C), s′ ≤ s, and

(g ◦ h)−1 [(s′]] = (p]. �

It is easy to verify that the identity function is always a perfect homomorphism for

every Hilbert algebra. Hence, the class of perfect Hilbert algebras and perfect homomor-

phisms is a category. We denote this category by PHA.
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The next results are needed to define the corresponding functors between the categories

PHA and HS.

Recall that, for every relation R ⊆ X1 ×X2, we define the map hR : P(X2)→ P(X1)

as follows:

hR(u) = {x ∈ X1 : R(x) ⊆ u}

for every u ∈ P(X2).

Proposition 4.7. Let 〈X1,≤1,K1〉 and 〈X2,≤2,K2〉 be H-sets and let R ⊆ X1 ×X2

be an H-functional relation. Then hR : A(X2)→ A(X1) is a perfect homomorphism.

Proof. By [8, Thm. 26], it follows that hR is a homomorphism.

(WH1) Let u ∈ A(X2) and x ∈ X1. Assume that hR(u) ⊆ [x)c. Thus x /∈ hR(u). That

is, R(x) * u. Let y ∈ R(x) such that y /∈ u. Then, since u is a decreasing subset, we have

that u ⊆ [y]c. Let us show that hR ([y)c) ⊆ [x)c. Let x′ ∈ hR ([y)c). Thus R(x′) ⊆ [y)c.

Suppose, by contradiction, that x′ ∈ [x)c. Thus x ≤ x′. By (HF2), it follows that

y ∈ R(x) ⊆ R(x′) ⊆ [y)c, which is a contradiction. Hence x′ ∈ [x)c. Therefore, there is

[y)c ∈ Irr(A(X2)) such that u ⊆ [y)c and hR([y)c) ⊆ [x)c.

(WH2) Let x ∈ X1 and y ∈ X2 be such that hR([y)c) ⊆ [x)c. Thus x /∈ hR([y)c).

That is, R(x) * [y)c. There is y′ ∈ R(x) such that y ≤ y′. By (HF2), it follows that

x ∈ R−1(y′) ⊆ R−1(y). Since (x, y) ∈ R, it follows by (HF1) that there is x′ ∈ X1 such

that x′ ≤ x and R(x′) = (y]. Now let us prove that for every u ∈ A(X2),

hR(u) ⊆ [x′) ⇐⇒ u ⊆ [y)c.

(⇒) Assume that hR(u) ⊆ [x′)c. Suppose u * [y)c. Then, there is z ∈ u such that

y ≤ z. Thus y ∈ u. Then R(x′) = (y] ⊆ u. It follows that x′ ∈ hR(u) ⊆ [x′)c, which is a

contradiction. Hence u ⊆ [y)c.

(⇐) Assume that u ⊆ [y)c. Suppose that hR(u) * [x′). Let x′′ ∈ hR(u) such that x′′ /∈
[x′)c. Thus R(x′′) ⊆ u ⊆ [y)c and x′ ≤ x′′. It follows by (FH2) that (y] = R(x′) ⊆ R(x′′).

Then y ∈ R(x′′), which is a contradiction. Therefore, hR(u) ⊆ [x′)c.

Hence, we have proved that there exists [x′)c ∈ Irr(A(X1)) such that [x′)c ⊆ [x)c and

h−1
R (([x′)c]) = ([y)c]. �

Let A and B be Hilbert algebras. For every map h : A → B, we define the relation

Rh ⊆ Irr(B)× Irr(A) as follows:

(q, p) ∈ Rh ⇐⇒ h(p) ≤ q.
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Proposition 4.8. Let A and B be perfect Hilbert algebras. If h : A → B is a perfect

homomorphism, then Rh : Irr(B)× Irr(A) is an H-functional relation.

Proof. (HF1) follows by condition (WH2).

(HF2) is straightforward by definition of Rh.

(HF3) We need to prove that hRh
(u) ∈ A(Irr(B)), for all u ∈ A(Irr(A)). First, recall

that A(Irr(A)) = {αA(a) : a ∈ A} and αA(a) = {p ∈ Irr(A) : a � p} (analogously for B).

Thus, let us prove that for every a ∈ A,

hRh
(αA(a)) = αB(h(a)).

Let a ∈ A. Suppose that hRh
(αA(a)) * αb(h(a)). Thus, there is q ∈ hRh

(αA(a)) such

that q /∈ αB(h(a)). Then, Rh(q) ⊆ αA(a) and h(a) ≤ q. By (WH1), there is p ∈ Irr(A)

such that a ≤ p and h(p) ≤ q. It follows that p ∈ Rh(q) and p /∈ αA(a), which is a

contradiction. Hence hRh
(αA(a)) ⊆ αb(h(a)). Now let q ∈ αB(h(a)). Thus h(a) � q.

We need to show that Rh(q) ⊆ αA(a). Suppose it is not. Thus, there is p ∈ Rh(q) such

that p /∈ αA(a). Then, h(p) ≤ q and a ≤ p. It follows that h(a) ≤ h(p) ≤ q, which is a

contradiction. Hence αB(h(a)) ⊆ hRh
(αA(a)). �

From we have proved in the previous proposition, we obtain the following.

Corollary 4.9. Let h : A → B be a perfect homomorphism between perfect Hilbert

algebras. Then, hRh
◦ αA = αB ◦ h.

Proposition 4.10. Let A, B and C perfect Hilbert algebras and X1, X2 and X3

H-sets.

(1) If id : A→ A is de identity map, then Rid= ≥.

(2) If ≤1 is the order relation of the H-set X1, then h≥1 is the identity map of A(X1).

(3) If h : A→ B and g : B → C are perfect homomorphism, then Rg◦h = Rg ◦Rh.

(4) If R ⊆ X1 ×X2 and T ⊆ X2 ×X3 are H-functional relations, then hR◦T = hR ◦ hT .

Proof. Conditions (1) and (2) are straightforward.

(3) The inclusion Rg◦h ⊆ Rg ◦ Rh follows by the definitions of Rh and Rg, and by

condition (WH1). On the other hand, the inclusion Rg ◦ Rh ⊆ Rg◦h follows just by the

definitions of Rh and Rg.

(4) It is straightforward taking into account that

hR◦T (u3) = {x1 ∈ X1 : (R ◦ T )(x1) ⊆ u3}
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and

(hR ◦ hT )(u3) = {x1 ∈ X1 : R(x1) ⊆ hT (u3)}.

�

Now we can define the corresponding functors. Let A : HS → PHA be defined as

follows:

• For every X ∈ HS, let A(X) = 〈A(X),⇒, X〉;

• For every R ∈ HS(X1, X2), let A(R) = hR

Let X : PHA→ HS be defined as follows:

• For every A ∈ PHA, let X(A) = 〈Irr(A),≤,KA〉;

• For every h ∈ PHA(A,B), let X(h) = Rh.

By the results of Section 2 and by the results this section, we have the following.

Corollary 4.11. A : HS→ PHA and X : PHA→ HS are contravariant functors.

To attain the main goal of this section, we need three further auxiliary results.

Proposition 4.12 ([8, Example 25]). Let 〈X1,≤1,K1〉 and 〈X2,≤2,K2〉 be H-sets.

Let f : X1 → X2 be an order-isomorphism such that

(1) for every w2 ∈ K2, there is w1 ∈ K1 such that f−1[w2] ⊆ w1;

(2) for every w1 ∈ K1, there is w2 ∈ K2 such that f [w1] ⊆ w2.

Then, the relations f ∗ ⊆ X1 ×X2 and (f−1)
∗ ⊆ X2 ×X1 defined by:

(x1, x2) ∈ f ∗ ⇐⇒ x2 ≤ f(x1), and (x2, x1) ∈ (f−1)
∗ ⇐⇒ x1 ≤ f−1(x2)

are H-functional relations. Moreover, f ∗ ◦ (f−1)
∗

= ≥1 and (f−1)
∗ ◦ f ∗= ≥2.

Let 〈X,≤,K〉 be an H-set. By Proposition 2.6, we have that Irr(A(X)) = {[x)c : x ∈
X}. Thus, we consider the map ε : X → Irr(A(X)) defined as follows:

ε(x) = [x)c.

Proposition 4.13. Let 〈X,≤,K〉 be an H-set. Then, the map ε : X → Irr(A(X)) is

an order-isomorphism satisfying conditions (1) and (2) of Proposition 4.12. Therefore,

ε∗ ⊆ X × Irr(A(X)) is an isomorphism of the category HS between the H-sets 〈X,≤,K〉
and 〈Irr(A(X)),⊆,KA(X)〉.
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Proof. It is clear that ε is an order-isomorphism. In order to prove conditions (1) and

(2) of Proposition 4.12, recall that KA(X) = {MA(X)(u) : u ∈ A(X)}, and by Proposition

2.7 MA(X)(u) = {[x)c ∈ Irr(A(X)) : x ∈ w \ u}, where u = w ⇒ v with w ∈ K and v ⊆ w.

(1) For every u = w ⇒ v ∈ A(X), with w ∈ K and v ⊆ w, it follows that

ε−1
[
MA(X)(u)

]
⊆ w.

(2) Let w ∈ K. Thus w ⇒ ∅ ∈ A(X). It is straightforward to show that ε[w] ⊆
MA(X)(w ⇒ ∅).

Hence, the map ε satisfies conditions (1) and (2) of Proposition 4.12. Therefore, ε∗ is

an isomorphism of the category HS, where its inverse is given by (ε−1)
∗
. �

Proposition 4.14. Let 〈X1,≤1,K1〉 and let 〈X2,≤2,K2〉 be H-sets and R ⊆ X1×X2

an H-functional relation. Then ε∗1 ◦RhR
= R ◦ ε∗2.

Proof. Let x1 ∈ X1 and x2 ∈ X2. On the one hand, we have

(x1, [x2)c) ∈ ε∗1 ◦RhR
⇐⇒ ∃x′1 ∈ X1 such that (x1, [x

′
1)c) ∈ ε∗1 and ([x′1)c, [x2)c) ∈ RhR

⇐⇒ ∃x′1 ∈ X1 such that [x′1)c ⊆ ε1(x1) = [x1)c and hr ([x2)c) ⊆ [x′1)c

⇐⇒ ∃x′1 ∈ X1 such that x′1 ≤ x1 and hR ([x2)c) ⊆ [x′1)c

On the other hand, we have

(x1, [x2)c) ∈ R ◦ ε∗2 ⇐⇒ ∃x′2 ∈ X2 such that (x1, x
′
2) ∈ R and (x′2, [x2)c) ∈ ε∗2

⇐⇒ ∃x′2 ∈ X2 such that (x1, x
′
2) ∈ R and [x2)c ⊆ ε2(x′2) = [x′2)c

⇐⇒ ∃x′2 ∈ X2 such that (x1, x
′
2) ∈ R and x2 ≤ x′2.

If (x1, [x2)c) ∈ ε∗1 ◦RhR
, then there is x′1 ∈ X1 such that x′1 ≤ x1 and hR ([x2)c) ⊆ [x′1)c.

Then R(x1) * [x2)c. Thus, there is x′2 ∈ X2 such that (x1, x2) ∈ R and x2 ≤ x′2. Hence

(x1, [x2)c) ∈ R ◦ ε∗2.

Now suppose that (x1, [x2)c) ∈ R◦ε∗2. Thus, there is x′2 ∈ X2 such that (x1, x
′
2) ∈ R and

x2 ≤ x′2. By (HF2), it follows that (x1, x2) ∈ R. By the definition of hR and using again

(HF2), it is straightforward to show that hR ([x2)c) ⊆ [x1)c. Hence (x1, [x2)c) ∈ ε∗1 ◦ RhR
.

�

By Corollary 4.9, we have that α is a natural isomorphism between the identity functor

in PHA and the functor A ◦ X. By Proposition 4.14, we obtain that ε∗ is a natural

isomorphism between the identity functor in HS and the functor X ◦A. Hence, putting

all these results together, we obtain the main result of this section.
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Theorem 4.15. The categories PHA and HS are dually equivalent given by the con-

travariant functor X : PHA→ HS and A : HS→ PHA.

5 Final summary and future work

We have obtained an algebraic characterization of the Hilbert algebras A(X) that rise from

the H-set 〈X,≤,K〉. From the inverse point of view, we have developed a representation

and a categorical discrete duality for the class of perfect Hilbert algebras through the

structures 〈X,≤,K〉.
Despite the conditions that define perfect Hilbert algebra are something like strange,

we showed that this class contains some well-known classes of algebras: it contains the

finite Hilbert algebras, the Hilbert algebras given by the order, and the class of atomic and

complete Tarski algebras. We also have proved that the class of perfect Hilbert algebras

is not a quasivariety.

There are some questions or problems which might be considered for future work:

• The variety generated by the class of Hilbert algebras given by the order (see for

instance [5]) is the algebraic counterpart of the order implicative calculus axiomatized by

Bull [2], which is an extension of the implicative fragment of intuitionistic logic. As we

mentioned, the class of perfect Hilbert algebras PHA contains the class of Hilbert algebras

given by the order. Thus, we might ask ourselves, does the class PHA contain the variety

generated by the class of Hilbert algebras generated by the order?

• If the answer to the previous question is negative, we can restrict the problem to

the following. Another important variety of Hilbert algebras is that generated by the

Hilbert algebras which are totally ordered (regarding its natural order). This variety was

mainly studied in [15] (here these Hilbert algebras are called linear) and in [4] (here these

Hilbert algebras are called prelinear). By [5, Lemma 12], it follows that every Hilbert

algebra which is totally ordered is a Hilbert algebra given by the order. Thus, we might

ask ourselves, does the class PHA contain the variety generated by the class of Hilbert

algebras which are totally ordered?

• If at least one of the two previous questions is answered affirmatively, it might be

interesting to develop a relational semantic, through the H-sets 〈X,≤,K〉, for the logic

defined by the corresponding subvariety of Hilbert algebras.
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Gauthier-Villars, 1966.

[12] M. Gehrke, H. Nagahashi, and Y. Venema. A Sahlqvist theorem for distributive modal logic. Ann.

Pure Appl. Logic, 131(1):65–102, 2005.

[13] S. Givant and P. Halmos. Introduction to Boolean algebras. Springer, 2009.

[14] A. Monteiro. Sur les algèbres de Heyting symétriques. Portugal. Math., 39(1–4):1–237, 1980.
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