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Priestley-style duality for DN-algebras
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Abstract. The aim of this article is to develop a Priestley-style duality
for the variety of DN-algebras. In order to achieve this, we use the con-
cept of free distributive lattice extension of a DN-algebra. We establish a
connection with the Priestley duality for distributive lattices. Finally, we
present topological descriptions for the lattice of filters, for the lattice of
congruences, and for certain kinds of subalgebras of a DN-algebra.
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1. Introduction

Distributive nearlattices arose as a natural generalization of distributive lat-
tices, and they were studied by several authors under different names, see
for instances [4,15,27,30,32,12,13,8,22,6,23,7]. A distributive nearlattice is a
join-semilattice 〈A,∨〉 such that for every element a ∈ A, the principal upset
↑a = {x ∈ A : a ≤ x} is a distributive lattice. Equivalently, a distributive
nearlattice can be defined as a join-semilattice 〈A,∨〉 satisfying the following
conditions: (i) if a, b ∈ A are bounded below, then there exists the infimum
of a and b; (ii) if a1 ∧ · · · ∧ an there exists in A, then (a1 ∨ b) ∧ · · · ∧ (an ∨ b)
exists for all b ∈ A and equals (a1 ∧ · · · ∧ an) ∨ b. Thus, it is clear that the
notion of distributive nearlattice is a natural generalization of distributive lat-
tice and it is an ordered algebraic structure much richer than join-semilattice.
Moreover, it is worth noting that an interesting subclass of distributive near-
lattice is provided by those join-semilattice in which each principal upset is
a boolean algebra. These semilattices were studied by Abbott [2,1] under the
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name semi-boolean algebras and mainly from the point of view of implication
algebras. The class of implication algebras is the algebraic semantics of the
{→}-fragment of classical propositional logic.

A drawback of the class of distributive nearlattices is that not a variety.
However, several authors defined a variety of ternary algebras, which we shall
call DN-algebras, through certain identities in such a way that the class of
distributive nearlattices is in a one-to-one correspondence with this variety,
see [27,13,3]. Moreover, in [21], it was proposed a propositional logic SDN

associated with the variety DN of DN-algebras. There, it was proved among
other things that the algebraic counterpart (in the sense of Abstract Algebraic
Logic, see [17]) of this logic is the variety of DN-algebras, that is, Alg(SDN) =
DN. Furthermore, in [24] it was shown that the logic SDN can be interpreted
inside the {∧,∨}-fragment of classical logic. These results show us that there is
a deep connection between the logic SDN and the {∧,∨}-fragment of classical
logic (see [18,19]), and thus there is also a deep connection between the variety
of DN-algebras and the variety of distributive lattices. For these reasons, we
consider that is convenient to work with DN-algebras instead of distributive
nearlattices.

A very useful tool for studying distributive lattices and those logics which
have an algebraic semantic based on distributive lattices is the Priestley duality
[28,29]. Furthermore, there is a vast literature of papers using and generalizing
the Priestley duality to different classes of algebras and applying it to the
study of logic. The Priestley duality and its variants are central in making the
link between syntactical and semantic approaches to logic. Hence, since DN-
algebras are a natural generalization of distributive lattices, we think it will
be important to try to establish a Priestley-style duality for the class of DN-
algebras. On the other hand, it is worth mentioning that in [8] (see also [9,10])
is developed a topological duality for the class of distributive nearlattices with
a greatest element in the spirit of Stone’s duality for distributive lattices.

The paper is organized as follows. In Section 2, we provide the required
notations and preliminaries on partially ordered sets and lattices, DN-algebras,
and Priestley duality. Section 3 is devoted to an overview of the notion of free
distributive lattice extension of a DN-algebra (see [15,9]). We show that the
algebraic categories of DN-algebras and distributive lattices are related by an
adjunction. In [9], it is proved that the lattice of filters of a DN-algebra and the
lattice of filters of the free distributive lattice extension are isomorphic. Then,
we show that this isomorphism can be restricted to an order-isomorphisms
between the set of prime filters of the DN-algebra and the set of prime filters
of its free distributive lattice extension, both sets ordered by set-theoretical
inclusion. This is important to develop our duality. In Section 4, we introduce
the definition of Priestley DN-space and show, at the object level, that the
class of DN-algebras is categorically equivalent to the class of Priestley DN-
spaces. In Section 5, we extend the equivalence of the previous section to a full
categorical duality between the category of DN-algebras and homomorphisms
and the category of Priestley DN-spaces and certain morphisms. The section is
ended by establishing a connection between the four categories mentioned so
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far: the categories of DN-algebras, distributive lattices, Priestley DN-spaces,
and Priestley spaces. In Section 6, we put the duality for DN-algebras to work
to obtain topological descriptions of some important algebraic concepts as
filters, congruences, and subalgebras of DN-algebras. These results provide a
wider context and generalize the Priestley duality for distributive lattices.

2. Preliminaries

2.1. Order and lattices

We assume that the reader is familiar with order and lattice theory. Our main
references for these are [25,16,5].

Let 〈P,≤〉 be a poset. For every subset U ⊆ P, we define the set ↑U =
{x ∈ P : x ≥ y, for some y ∈ U}. Dually, we have the definition of ↓U. We shall
write ↑x instead of ↑{x}. A subset U ⊆ P is called upset if U = ↑U. Dually,
V ⊆ P is a downset if ↓V = V. We denote by Up(P ) the collection of all upsets
of P. We shall consider the complete distributive lattice 〈Up(P ),∩,∪, ∅, P 〉.

Let L = 〈L,∧,∨〉 be a lattice. We will say that a subset F ⊆ L is a
filter of L if it is an upset and closed under ∧. We denote the collection of
all filters of L by Fi(L). A filter F is said to be prime if a ∈ F or b ∈ F
whenever a ∨ b ∈ F. Let Fipr(L) be the collection of all prime filters of L. (See
Remark 2.5).

2.2. DN-algebras

As we mentioned in the introduction, a distributive nearlattice is a join-
semilattice 〈A,∨〉 such that for every element a ∈ A, the principal upset
↑a = {x ∈ A : a ≤ x} is a distributive lattice. We encourage the reader
unfamiliar with distributive nearlattices to consult [13,11,27].

Definition 2.1 [3]. An algebra A = 〈A,m〉 of type (3) is called a DN-algebra if
the following identities hold:
(P1) m(x, y, x) = x;
(P2) m(m(x, y, z),m(y,m(u, x, z), z), w) = m(w,w,m(y,m(x, u, z), z));
(P3) m(x, x,m(y, z, w)) = m(m(x, x, y),m(x, x, z), w).

We denote by DN the variety of DN-algebras. At first glance, the above
identities appear to be strange. However, the next theorem shows us the real
meaning of these identities.

Theorem 2.2 [13]. (1) If A = 〈A,m〉 is a DN-algebra, then the algebra A∗ =
〈A,∨〉, where

x ∨ y := m(x, x, y), (2.1)

is a distributive nearlattice.
(2) If S = 〈S,∨〉 is a distributive nearlattice, then the algebra S∗ = 〈S,m〉

with

m(x, y, z) := (x ∨ z) ∧z (y ∨ z)

(where ∧z is the meet of x ∨ z and y ∨ z in [z)) is a DN-algebra.
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(3) If A is a DN-algebra and S is a distributive nearlattice, then (A∗)∗ =
A and (S∗)∗ = S.

The previous theorem shows us that there is a one-to-one correspon-
dence between DN-algebras and distributive nearlattices. Actually, this can be
easily extended to a categorical equivalence between the algebraic category of
DN-algebras and homomorphisms and the category of distributive nearlattices
whose morphisms are join-homomorphisms preserving existent finite meets.

Example 2.3. Let 〈L,∧,∨〉 be a distributive lattice. Then, it is clear that 〈L,∨〉
is a distributive nearlattice. Hence, 〈L,m〉 is a DN-algebra, where the operation
m is defined by m(x, y, z) = (x ∨ z) ∧ (y ∨ z).

Example 2.4. Let A = {X ⊆ N : #(X) = ℵ0} and m is the ternary map on
A defined as follows: m(X,Y,Z) = (X ∪ Z) ∩ (Y ∪ Z), for all X,Y,Z ∈ A. It
is straightforward to show that 〈A,∪〉 is a distributive nearlattice, where the
meet in the principal upsets of 〈A,∪〉 is ∩. Hence, by Theorem 2.2, 〈A,m〉 is
a DN-algebra.

Given a DN-algebra A = 〈A,m〉, we consider the join operation ∨ on A
defined as in (2.1) and the partial order ≤ on A is determined by ∨, i.e., x ≤ y
if and only if y = x ∨ y = m(x, x, y). For every element a ∈ A, we denote the
meet in [a) by ∧a. It should be noted that the meet x ∧ y exists in A if and
only if x, y have a common lower bound in A. Thus, the meet of x and y in [a)
coincides with their meet in A, that is, x∧ay = x∧y for all x, y ∈ [a). Moreover,
whenever we write a1 ∧ · · · ∧ an will means that the meet of a1, . . . , an there
exists in A and is a1 ∧ · · · ∧ an. On the other hand, notice that if a1 ∧ · · · ∧ an

there exists in A, then (a1 ∧ · · · ∧ an) ∨ b = (a1 ∨ b) ∧ · · · ∧ (an ∨ b), for all
b ∈ A. All these considerations should be kept in mind since we will use them
without mention.

Let A be a DN-algebra. A subset F ⊆ A is said to be a filter of A if it
is an upset of A and closed under existing finite meets. We denote by Fi(A)
the collection of all filters of A. It is clear that Fi(A) is an algebraic closure
system, and thus it is a complete lattice. Given a nonempty subset X ⊆ A, let
us denote by FigA(X) the filter of A generated by X. It is known that

FigA(X) = {a ∈ A : a = a1 ∧ · · · ∧ an, for some a1, . . . , an ∈ ↑X}.

This can be proved by the results given in [15]. It is also known that

〈Fi(A),∩,�〉
is a distributive lattice, where F�G = FigA(F∪G) (see for instance [15,27,11]).
Moreover, we notice that FigA(X) can be written in terms of the ternary
operation m as follows:

FigA(X) = {a ∈ A : a = m(x1, . . . , xn, a), for some x1, . . . , xn ∈ X}
where m(x1, . . . , xn, y) = (x1 ∨ y) ∧ · · · ∧ (xn ∨ y). We leave the details to the
reader.

A filter F is said to be prime if a ∨ b ∈ F, then a ∈ F or b ∈ F, for all
a, b ∈ A. Let us denote by Fipr(A) the collection of all prime filters of A.
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Remark 2.5. Notice that the empty set is always a filter of a DN-algebra (lat-
tice). Moreover, for every DN-algebra (lattice) A, from the definition, we have
also that the empty set and the whole set A are prime filters. These are unusual
facts. It is standard to restrict the filters to the nonempty sets and the prime
filters must be proper. Our considerations made here are the key to developing
our duality.

Let A be DN-algebra. A subset I ⊆ A is said to be an ideal of A if it is
a downset closed under ∨. Given a subset X ⊆ A,

IdgA(X) = {a ∈ A : a ≤ x1 ∨ · · · ∨ xn, for some x1, . . . , xn ∈ X}
is the least ideal of A containing X. An ideal I is called prime if a ∈ I or
b ∈ I, whenever a ∧ b exists and a ∧ b ∈ I.

Theorem 2.6 [26]. Let A be a DN-algebra, I an ideal of A and F a filter of
A. If F ∩ I = ∅, then there exists a prime filter P of A such that F ⊆ P and
P ∩ I = ∅.

Proof. Let I be an ideal and F a filter of A such that F ∩ I = ∅. Then, by
[26, Theorem 1], there is a prime ideal P of A such that I ⊆ P and F ∩ P =
∅. It is straightforward show that P c is a prime filter. Hence F ⊆ P c and
P c ∩ I = ∅. �

Corollary 2.7. Let A be a DN-algebra and a, b ∈ A. If a � b, then there is a
prime filter P of A such that a ∈ P and b /∈ P.

Let A = 〈A,m〉 be a DN-algebra and L = 〈L,∧,∨〉 a distributive lat-
tice. Given that L can be considered as a DN-algebra with the operation
mL(a, b, c) = (a ∨ c) ∧ (b ∨ c) = (a ∧ b) ∨ c, we shall say that a map f : A → L
is a homomorphism from A into L if f(m(a, b, c)) = mL(f(a), f(b), f(c)) =
(f(a) ∨ f(c)) ∧ (f(b),∨f(c)), for all a, b, c ∈ A. It is straightforward to check
that a map f : A → L is a homomorphism if and only if satisfies the following:
for all a, b ∈ A,

(1) f(a ∨ b) = f(a) ∨ f(b), and
(2) f(a ∧ b) = f(a) ∧ f(b), whenever a ∧ b exists in A.

A embedding is an injective homomorphism.

2.3. Bounded Priestley spaces

In this subsection, we recall the Priestley duality for distributive lattices (not
necessarily bounded). For more details, we refer the reader to [14,16].

Definition 2.8. A structure 〈X, τ,≤, 0, 1〉 is said to be a bounded Priestley space
if:

(1) 〈X, τ〉 is a compact space.
(2) 〈X,≤〉 is a poset with least element 0 and greatest element 1, and 0 �= 1.
(3) 〈X, τ,≤〉 is totally order-disconnected : for any x, y ∈ X where x � y,

there is a clopen upset U such that x ∈ U and y /∈ U.
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Notice that 〈X, τ,≤, 0, 1〉 is a bounded Priestley space if and only if
〈X, τ,≤〉 is a Priestley space [16] such that 0 and 1 are, respectively, the least
and greatest elements of 〈X,≤〉.

Let L be a distributive lattice (not necessarily bounded). Recall that
Fipr(L) denotes the collection of all prime filters of L and it is ordered by
the set-theoretical inclusion. Recall also that ∅, L ∈ Fipr(L). Let ϕ : L →
Up(Fipr(L)) defined as follows: for every u ∈ L,

ϕ(u) = {F ∈ Fipr(L) : u ∈ F}.

It follows that ϕ is a lattice-embedding. Let

P(L) = 〈Fipr(L), τL,⊆, ∅, L〉
be defined as follows: τL is the topology on Fipr(L) having as subbasis the
collection

{ϕ(u) : u ∈ L} ∪ {ϕ(v)c : v ∈ L}.

Proposition 2.9. Let L be a distributive lattice. Then, the structure P(L) =
〈Fipr(L), τL,⊆, ∅, L〉 is a bounded Priestley space.

Given a distributive lattice L, we will say that P(L) is the dual bounded
Priestley space of L. Let 〈X, τ,≤〉 be an ordered topological space. We denote
by ClUp∗(X) the collection of all proper, nonempty clopen upsets of X.

Proposition 2.10. Let L be a distributive lattice. Then,

ClUp∗(P(L)) = {ϕ(u) : u ∈ L}.

Corollary 2.11 (Representation). Every distributive lattice is isomorphic to the
lattice of all proper, nonempty clopen upsets of some bounded Priestley space.

Let 〈X, τ,≤, 0, 1〉 be a bounded Priestley space. Consider the distributive
lattice D(X) = 〈ClUp∗(X),∩,∪〉. Then, we can consider the dual bounded
Priestley space of D(X):

P(D(X)) = 〈Fipr(D(X)), τD(X),⊆, ∅,D(X)〉.
Let θ : X → Fipr(D(X)) be defined as follows: for every x ∈ X,

θ(x) = {U ∈ ClUp∗(X) : x ∈ U}.

It is straightforward to show that θ(x) is a prime filter of the lattice D(X).
Thus, θ is well-defined.

Let 〈X, τX ,≤X〉 and 〈Y, τY ,≤Y 〉 be ordered topological spaces. A map
f : X → Y is said to be an order-homeomorphism if it is a homeomorphism
and an order-isomorphism.

Proposition 2.12. Let 〈X, τ,≤, 0, 1〉 be a bounded Priestley space. Then, θ is
an order-homeomorphism.
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Let DL be the category of distributive lattices as objects and lattice-
homomorphisms as morphisms. Let X and Y be two bounded Priestley spaces.
A map f : X → Y is said to be order-continuous if it is a continuous order-
preserving map such that f(0) = 0 and f(1) = 1. Let BPS be the category of
bounded Priestley spaces and order-continuous maps.

Let us define the following functors. Let P : DL → BPS be defined
as follows: for every L ∈ DL, P(L) = 〈Fipr(L), τL,⊆, ∅, L〉. For a lattice-
homomorphism h : L → M, P(h) = h−1 : P(M) → P(L). On the other
hand, let D : BPS → DL be defined by: for every X ∈ BPS, D(X) =
〈ClUp∗(X),∩,∪〉, and for every order-continuous map f : X → Y, D(f) =
f−1 : D(Y ) → D(X).

Theorem 2.13 (Priestley duality). The categories DL and BPS are dually
equivalents under the corresponding functors P : DL → BPS and D : BPS →
DL.

3. The free distributive lattice extension

The following definition can be found in [15] and [9].

Definition 3.1. Let A be a DN-algebra. A distributive lattice L is called a free
distributive lattice extension of A if there exists a embedding e : A → L such
that for each distributive lattice M and a embedding h : A → M, there is a
unique lattice-embedding ̂h : L → M with h = ̂h ◦ e.

By an argument from category theory, it follows that if a free distributive
lattice extension exists for a DN-algebra, then it is unique, up to isomorphism.
In [9], it is proved, by a topological approach, the existence of the free dis-
tributive lattice extension of a DN-algebra. By the construction itself given
in [9] (see Theorem 3.2), it follows that every DN-algebra is finitely meet-
dense in its free distributive lattice extension. Next, we shall present a useful
characterization of the free distributive lattice extensions.

Proposition 3.2. Let A be a DN-algebra. Let L be a distributive lattice and
e : A → L an embedding. The following are equivalent:
(1) 〈L, e〉 is the free distributive lattice extension of A.
(2) e[A] is finitely meet-dense in L, that is,

L = {e(a1) ∧ · · · ∧ e(an) : n ∈ N, a1, . . . , an ∈ A}.

As we mentioned in the above paragraph, the implication (1) ⇒ (2) is
consequence of the results in [9]. Here we present an alternative proof, which
does not depend on the specific construction of the free distributive lattice
extension.

Proof. (1) ⇒ (2) Let M be the sublattice of L generated by e[A]. Since e[A] is
closed under joins in L, it follows that for every u ∈ M, there are a1, . . . , an ∈ A
such that u = e(a1) ∧ · · · ∧ e(an). Let h : A → M be the map defined by
h(a) = e(a), for all a ∈ A. It is clear that h is an embedding. By (1), there is
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a unique lattice-embedding ̂h : L → M with h = ̂h ◦ e. Let u ∈ L. Then, there
are a1, . . . , an ∈ A such that ̂h(u) = e(a1) ∧ · · · ∧ e(an). Notice that for each
a ∈ A, e(a) = h(a) = ̂h(e(a)). Then, it follows that

̂h(u) = ̂h(e(a1)) ∧ · · · ∧ ̂h(e(an)) = ̂h(e(a1) ∧ · · · ∧ e(an)).

Since ̂h is an embedding, we obtain that u = e(a1) ∧ · · · ∧ e(an). Hence, e[A]
is finitely meet-dense in L.

(2) ⇒ (1) Let M be a distributive lattice and h : A → M an embedding.
We define ̂h : L → M as follows: for u ∈ L,

̂h(u) = h(a1) ∧ · · · ∧ h(an)

whenever u = e(a1) ∧ · · · ∧ e(an) with a1, . . . , an ∈ A. We show that ̂h is well-
defined. Let u ∈ L be such that u = e(a1) ∧ · · · ∧ e(an) = e(b1) ∧ · · · ∧ e(bm).
We have that e(a1) ∧ · · · ∧ e(an) ≤ e(bj), for all j ∈ {1, . . . , m}. Then

e(bj) = (e(a1) ∨ e(bj)) ∧ · · · ∧ (e(an) ∨ e(bj)) = e((a1 ∨ bj) ∧ · · · ∧ (an ∨ bj)).

Since e is injective, we obtain that bj = (a1 ∨ bj) ∧ · · · ∧ (an ∨ bj), for all j ∈
{1, . . . , m}. Thus, applying the embedding h, it follows that h(a1)∧· · ·∧h(an) ≤
h(bj), for all j ∈ {1, . . . , m}. Then h(a1) ∧ · · · ∧ h(an) ≤ h(b1) ∧ · · · ∧ h(bm).
Similarly, we obtain that h(b1) ∧ · · · ∧ h(bm) ≤ h(a1) ∧ · · · ∧ h(an). Hence,
h(a1) ∧ · · · ∧ h(an) = h(b1) ∧ · · · ∧ h(bm). Therefore, h is well-defined. By a
very similar argument, it can be proved that ̂h is injective. Moreover, it is
straightforward to show that ̂h is a lattice-homomorphism, h = ̂h ◦ e and it is
the unique lattice-embedding with this property. �

Now we show that there exists a free distributive lattice extension for
each DN-algebra (cf. Theorem 1.3 in [15] and Theorem 3.2 in [9]). Let A be a
DN-algebra. Consider the set Fipr(A) ordered by the set-theoretical inclusion.
We define the map αA : A → Up(Fipr(A)) as follows: for every a ∈ A

αA(a) = {F ∈ Fipr(A) : a ∈ F}.

It is clear that αA is well-defined. When there is no danger of confusion, we
omit the subscript the αA.

Proposition 3.3. Let A be a DN-algebra. Then, the map α : A → Up(Fipr(A))
is an embedding.

Proof. It is straightforward by Corollary 2.7 and the definition of α itself. �

Let A be a DN-algebra. Let L(A) be the sublattice of Up(Fipr(A)) gen-
erated by α[A]. From the above proposition, we have α[A] is closed under finite
unions. Thus, it follows that

L(A) = {α(a1) ∩ · · · ∩ α(an) : n ∈ N and a1, . . . , an ∈ A}.

Therefore, the following proposition follows directly from the previous propo-
sition and by the characterization given in Proposition 3.2.

Proposition 3.4. For every DN-algebra A, 〈L(A), α〉 is the free distributive
lattice extension of A.
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From now on, we will denote by 〈L(A), eA〉 the free distributive lattice
extension of a DN-algebra A.

Now let us establish a categorical relation between the variety of DN-
algebras and the variety of distributive lattices. Let DN be the algebraic cat-
egory of DN-algebras and homomorphisms and DL the algebraic category of
distributive lattices and homomorphisms.

We define U : DL → DN as follows. For every distributive lattice L, let
U(L) = 〈L,m〉, where m(x, y, z) = (x ∨ z) ∧ (y ∨ z). We know that U(L) is a
DN-algebra. Let L and M be distributive lattices. For every homomorphism
h : L → M, we define U(h) = h : U(L) → U(M). Then, U(h) is a homomor-
phism between DN-algebras. It is straightforward to show directly that U is a
functor. Next we want a functor from DN to DL. We need the following.

Proposition 3.5. Let A and B be DN-algebras. If h : A → B is a homomorphism,
then there is a unique lattice-homomorphism L(h) : L(A) → L(B) such that
L(h) ◦ eA = eB ◦ h. Moreover, if h is injective, then so is L(h).

Proof. Let h : A → B be a homomorphism of DN-algebras. We define the map
L(h) : L(A) → L(B) as follows: for every u ∈ L(A),

L(h)(u) =
∧

1≤i≤n

eB(h(ai))

whenever u = eA(a1) ∧ · · · ∧ eA(an) for some a1, . . . , an ∈ A. First, we need
to show that L(h) is well-defined. Let u ∈ L(A) and suppose that u =

∧

1≤i≤n

eA(ai) =
∧

1≤j≤m

eA(bj), for some ai, bj ∈ A. Then, for every j = 1, . . . ,m,

we have
∧

1≤i≤n

eA(ai) ≤ eA(bj)

⎛

⎝

∧

1≤i≤n

eA(ai)

⎞

⎠ ∨ eA(bj) = eA(bj)

∧

1≤i≤n

eA(ai ∨ bj) = eA(bj)

e

⎛

⎝

∧

1≤i≤n

(ai ∨ bj)

⎞

⎠ = eA(bj).

Since eA is an embedding, we obtain that
∧

1≤i≤n

(ai ∨ bj) = bj . Then,

∧

1≤i≤n

(h(ai) ∨ h(bj)) = h(bj)

eB

⎛

⎝

∧

1≤i≤n

(h(ai) ∨ h(bj))

⎞

⎠ = eB(h(bj))
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∧

1≤i≤n

(eB(h(ai)) ∨ eB(h(bj))) = eB(h(bj))

∧

1≤i≤n

eB(h(ai)) ≤ eB(h(bj)).

Hence,
∧

1≤i≤n eB(h(ai)) ≤ ∧

1≤j≤m eB(h(bj)). By analogous argument, we
obtain the reverse inequality. Then,

∧

1≤i≤n eB(h(ai)) =
∧

1≤j≤m eB(h(bj)).
Hence, L(h) is well-defined. Now, it is easy to show that L(h) is a lattice-homo-
morphism. Moreover, by definition of L(h), it is clear that L(h) ◦ eA = eB ◦ h
and L(h) is the unique lattice-homomorphism with this property. Now, if h
is injective, then following a similar argumentation showing that L(h) is well-
defined it can be proved that L(h) is also injective. �
Proposition 3.6. Let h : A → B and g : B → C be homomorphisms between
DN-algebras A, B and C. Then, L(g ◦ h) = L(g) ◦ L(h).

Proof. Let u ∈ L(A). Let a1, . . . , an ∈ A be such that u = eA(a1)∧· · ·∧eA(an).
Then

L(g ◦ h)(u) =
∧

1≤i≤n

eC((g ◦ h)(ai)) =
∧

1≤i≤n

eC(g(h(ai))) = L(g)(L(h)(u)).

�
We are ready to define L : DN → DL as follows. For every DN-algebra

A, let L(A) = L(A), and for every homomorphism of DN-algebras h : A → B,
let L(h) = L(h). By the above propositions, it follows that L is a functor.

Theorem 3.7. The pair 〈L,U〉 is an adjoint of functors.

Proof. Notice that for every DN-algebra A, (U◦L)(A) = L(A). Then, for every
DN-algebra A, we have the morphism eA : A → (U ◦ L)(A) of the category
DN . We need to show that for each DN-algebra A and each homomorphism
h : A → U(L), there exists a unique homomorphism ̂h : L(A) → L such that
U(̂h) ◦ eA = h.

Let A be a DN-algebra and h : A → U(L) a homomorphism. By Propo-
sition 3.5, there exists a unique homomorphism ̂h := L(h) : L(A) → L(U(L))
such that ̂h ◦ eA = eU(L) ◦ h. Notice that L(U(L)) = L and eU(L) = idL is the
identity map. Let a ∈ A. Then,

(U(̂h) ◦ eA)(a) = (̂h ◦ eA)(a) = (eU(L) ◦ h)(a) = h(a).

�
Now let us establish the relation between the filters of a DN-algebra A

and the filters of the free distributive lattice extension L(A).
Let A be a DN-algebra and 〈L(A), e〉 its free distributive lattice exten-

sion. We define Ψ: Fi(L(A)) → Fi(A) and Φ: Fi(A) → Fi(L(A)) as follows:

Ψ(G) = e−1[G] and Φ(F ) = FigL(A)(e[F ]) (3.1)

for each G ∈ Fi(L(A) and F ∈ Fi(A), where FigL(A)(e[F ]) is the filter of
L(A) generated by e[F ]. Since e : A → L(A) is an embedding, it follows that
e−1[G] ∈ Fi(A). Thus, Ψ is well-defined.
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Proposition 3.8 [9]. Let A be a DN-algebra and 〈L(A), e〉 its free distributive
lattice extension of A. Then, the maps Ψ: Fi(L(A)) → Fi(A) and Φ: Fi(A) →
Fi(L(A)) are isomorphisms, one inverse of the other. Moreover, the corre-
sponding restriction Ψ: Fipr(L(A)) → Fipr(A) and Φ: Fipr(A) → Fipr(L(A))
are order-isomorphisms.

Proof. The proof that the maps Ψ: Fi(L(A)) → Fi(A) and Φ: Fi(A) →
Fi(L(A)) are isomorphisms can be found in [9]. It is well-known that a proper
filter F of a distributive lattice L is prime if and only if F is a meet-prime
element of the lattice Fi(L). The same statement is true in the context of dis-
tributive nearlattices. Moreover, it is clear that if two lattices are isomorphic,
then the ordered sets of meet-prime elements are order-isomorphic. Hence,
we have that the corresponding restriction Ψ: Fipr(L(A)) → Fipr(A) and
Φ: Fipr(A) → Fipr(L(A)) are order-isomorphisms. �

Let 〈L(A), e〉 be the free distributive lattice extension of a DN-algebra
A. Recall that the map ϕ : L(A) → Up(Fipr(L(A))) is defined as follows

ϕ(u) = {G ∈ Fipr(L(A)) : u ∈ G}
and it is a lattice-embedding. We have the following.

Lemma 3.9. Let a ∈ A and u ∈ L(A). Let a1, . . . , an ∈ A be such that u =
e(a1) ∧ · · · ∧ e(an). Then, we have:
(1) Ψ[ϕ(e(a))] = α(a).
(2) Ψ[ϕ(u)] = α(a1) ∩ · · · ∩ α(an).
(3) Ψ[ϕ(u)c] = α(a1)c ∪ · · · ∪ α(an)c.

Here ϕ(u)c = Fipr(L(A))\ϕ(u) and α(a)c = Fipr(A)\α(a).

Proof. (1) Let a ∈ A. Then,

Ψ[ϕ(e(a))] = {Ψ(G) : G ∈ ϕ(e(a))} = {e−1[G] : a ∈ e−1[G]}.

It follows that Ψ[ϕ(e(a))] ⊆ α(a). Let F ∈ α(a). Since F ∈ Fipr(A), it follows
that there is G ∈ Fipr(L(A)) such that F = Ψ(G) = e−1[G]. Thus a ∈ e−1[G].
Then, F = e−1[G] ∈ Ψ[ϕ(e(a))]. Hence α(a) ⊆ Ψ[ϕ(e(a))].

(2) and (3) are consequence of (1) using that ϕ is a lattice-embedding
and Ψ is a bijection. �

4. Representation

Let X be a subset and A a collection of subsets of X. We define the binary
relation ≤A on X as follows:

x ≤A y ⇐⇒ ∀U ∈ A(x ∈ U =⇒ y ∈ U).

It is clear that ≤A is a quasiorder (a reflexive and transitive relation) on X.

Definition 4.1. A tuple 〈X, τ,A, 0, 1〉 is called a Priestley DN-space if:
(1) 〈X, τ〉 is a compact space and 0, 1 ∈ X.
(2) A is a collection of subsets of X such that A∪{U c : U ∈ A} is a subbasis

for τ.
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(3) 0 /∈ ⋃ A and 1 ∈ ⋂ A.
(4) For all U, V,W ∈ A, (U ∪ W ) ∩ (V ∪ W ) ∈ A.
(5) For each pair of distinct points x, y ∈ X, there exists U ∈ A containing

exactly one of these points.

Let us point out several facts and properties about Priestley DN-spaces.
By (S2), we can see that the members in A are clopen subsets of the space
〈X, τ〉, and by (S3) we have that every U ∈ A is proper and nonempty. From
condition (S5), it follows that the relation ≤A is a partial order on X. Moreover,
each U ∈ A is an upset of the poset 〈X,≤A〉. Condition (S3) implies that 0
and 1 are, respectively, the least element and the greatest element of 〈X,≤A〉.
Condition (S4) is equivalent to the following two conditions: (i) if U, V ∈ A,
then U ∪ V ∈ A; (ii) for any U, V,W ∈ A, if W ⊆ U ∩ V, then U ∩ V ∈ A.

Proposition 4.2. Let 〈X, τ,A, 0, 1〉 by a Priestley DN-space. Then, the struc-
ture 〈X, τ,≤A, 0, 1〉 is a bounded Priestley space.

Proof. It only remains to prove that 〈X, τ,≤A〉 is totally order-disconnected.
As we saw above, we know that A ⊆ ClUp∗(X). Now, by definition of the
order ≤A, we have that

x �A y =⇒ ∃U ∈ A(x ∈ U and y /∈ U).

Hence, 〈X, τ,≤A〉 is totally order-disconnected. �

Proposition 4.3. Let 〈X, τ,A, 0, 1〉 be a Priestley DN-space. Then,

ClUp∗(X) = {U1 ∩ · · · ∩ Un : n ∈ N, U1, . . . , Un ∈ A}.

Proof. Since A ⊆ ClUp∗(X), it is clear that

{U1 ∩ · · · ∩ Un : n ∈ N, U1, . . . , Un ∈ A} ⊆ ClUp∗(X).

Let U ∈ ClUp∗(X). Let y /∈ U. For every x ∈ U, we have x �A y. Thus,
for every x ∈ U, there is Ux ∈ A such that x ∈ Ux and y /∈ Ux. Then
U ⊆ ⋃{Ux : x ∈ U}. Since U is closed, it follows that U is compact. Thus,
there are Ux1 , . . . , Uxn

∈ A such that U ⊆ Ux1 ∪· · ·∪Uxn
. By (S4), Uy := Ux1 ∪

· · ·∪Uxn
∈ A and y /∈ Uy. Hence, we have proved that for every y /∈ U, there is

Uy ∈ A such that U ⊆ Uy and y /∈ Uy. Then, U =
⋂{V ∈ A : U ⊆ V }. Since

U c is also compact, it follows that U = V1 ∩ · · · ∩ Vn for some V1, . . . , Vn ∈ A.
This completes the proof. �

Proposition 4.4. Let 〈X, τ,A, 0, 1〉 be a Priestley DN-space. Then 〈A, m̃〉 is a
DN-algebra, where m̃ is defined as follows: for all U, V,W ∈ A,

m̃(U, V,W ) = (U ∪ W ) ∩ (V ∪ W ). (4.1)

Proof. Notice that m̃(U,U, V ) = U ∪ V, for all U, V ∈ A. Moreover, from
condition (S4) and the paragraph after Definition 4.1, it follows that 〈A,∪〉 is
a distributive nearlattice. Hence, by Theorem 2.2, we obtain that 〈A, m̃〉 is a
DN-algebra. �

Given a Priestley DN-space 〈X, τ,A, 0, 1〉, we will say that 〈A, m̃〉 is the
dual DN-algebra of X.
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Theorem 4.5. Let 〈X, τ,A, 0, 1〉 be a Priestley DN-space. Then, the distributive
lattice 〈ClUp∗(X),∩,∪〉 is the free distributive lattice extension of the DN-
algebra 〈A, m̃〉.
Proof. We know that A⊆ClUp∗(X). Then the identity map id: A→ClUp∗(X)
is an embedding. Now, by Proposition 4.3, A is finitely meet-dense in ClUp∗(X).
Hence, from Proposition 3.2, it follows that ClUp∗(X) is the free distributive
lattice extension of the DN-algebra A. �

Let now A = 〈A,m〉 be a DN-algebra. Recall that α : A → Up(Fipr(A))
is the map defined by α(a) = {F ∈ Fipr(A) : a ∈ F}, for all a ∈ A. Let τA be
the topology generated by the subbasis

{α(a) : a ∈ A} ∪ {α(b)c : b ∈ A}.

Proposition 4.6. Let A be a DN-algebra. Then,

X (A) = 〈Fipr(A), τA, α[A], ∅, A〉
is a Priestley DN-space.

Proof. (S1) Let A0, B0 ⊆ A be such that

Fipr(A) =
⋃

{α(a) : a ∈ A0} ∪
⋃

{α(b)c : b ∈ B0}.

Let F := FigA(B0) and I := IdgA(A0). Suppose that F ∩ I = ∅. Thus, by
Theorem 2.6, there is P ∈ Fipr(A) such that F ⊆ P and P ∩ I = ∅. In
particular, B0 ⊆ P and P ∩ A0 = ∅. Then P /∈ ⋃{α(a) : a ∈ A0} ∪ ⋃{α(b)c :
b ∈ B0}, which is a contradiction. Hence, F ∩ I �= ∅. Let c ∈ F ∩ I. Then,
there are y1, . . . , yn ∈ ↑B0 and a1, . . . , am ∈ A0 such that y1 ∧ · · · ∧ yn = c ≤
a1 ∨ · · · ∨ an. Thus, since α is an embedding, we have α(y1) ∩ · · · ∩ α(yn) =
α(c) ⊆ α(a1) ∪ · · · ∪ α(am). Since y1, . . . , yn ∈ ↑B0, there are b1, . . . , bn ∈ B0

such that bi ≤ yi for all i = 1, . . . , n. Hence

α(b1) ∩ · · · ∩ α(bn) ⊆ α(a1) ∪ · · · ∪ α(am).

That is,

∅ = α(b1) ∩ · · · ∩ α(bn) ∩ α(a1)c ∩ · · · ∩ α(am)c.

Then,

Fipr(A) = α(a1) ∪ · · · ∪ α(an) ∪ α(b1)c ∪ · · · ∪ α(bm)c.

Therefore, 〈Fipr(A), τA〉 is a compact space.
(S2) and (S3) are straightforward by definition.
(S4) Let a, b, c ∈ A. Since α : A → Up(Fipr(A)) is an embedding, it follows

that

(α(a) ∪ α(c)) ∩ (α(b) ∪ α(c)) = α(m(a, b, c)) ∈ α[A].

(S5) is straightforward. �
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Given a DN-algebra A, we say that X (A) = 〈Fipr(A), τA, α[A], ∅, A〉
is the dual Priestley DN-space of A. Notice that the partial order ≤α[A] is
actually the set-theoretical inclusion. Indeed, let F,G ∈ Fipr(A),

F ≤α[A] G ⇐⇒ ∀a ∈ A(F ∈ α(a) =⇒ G ∈ α(a))

⇐⇒ ∀a ∈ A(a ∈ F =⇒ a ∈ G) ⇐⇒ F ⊆ G.

Let A = 〈A,m〉 be a DN-algebra. Since α : A → Up(Fipr(A)) is an
embedding, it follows that for all a, b, c ∈ A,

α(m(a, b, c)) = (α(a) ∪ α(c)) ∩ (α(b) ∪ α(c)) = m̃(α(a), α(b), α(c)).

Hence, we obtain that 〈A,m〉 ∼= 〈α[A], m̃〉, where m̃ is defined by (4.1). There-
fore, we have the following representation.

Corollary 4.7 (Representation). Every DN-algebra A is isomorphic to the dual
DN-algebra A of some Priestley DN-space 〈X, τ,A, 0, 1〉.

Now, let us consider the opposite direction. Let 〈X, τ,A, 0, 1〉 be a Priest-
ley DN-space. Let A(X) = 〈A, m̃〉 its dual DN-algebra. Hence, we can consider
the dual Priestley DN-space of A(X):

X (A(X)) = 〈Fipr(A(X)), τA(X), αA(X)[A], ∅,A〉.
Let us define θ : X → Fipr(A(X)) as follows: for every x ∈ X,

θ(x) = {u ∈ A : x ∈ u}.

It is easy to show that θ(x) ∈ Fipr(A(X)), for all x ∈ X. Thus, θ is well-defined.

Proposition 4.8. Let 〈X, τ,A, 0, 1〉 be a Priestley DN-space. Then the map
θ : X → Fipr(A(X)) is a homeomorphism from the space 〈X, τ,A, 0, 1〉 onto
the space X (A(X)) = 〈Fipr(A(X)), τA(X), αA(X)[A], ∅,A〉. Moreover, {θ[u] :
u ∈ A} = αA(X)[A].

Proof. We prove this proposition in several steps.
• θ is injective. It is a direct consequence from condition (S5)
• θ is onto. Let F ∈ Fipr(A(X)). Since ClUp∗(X) is the free distributive

lattice extension of the DN-algebra A(X), it follows by Proposition 3.8 that
G = FigClUp∗(X)(F) is a prime filter of the distributive lattice ClUp∗(X).
Since ClUp∗(X) is the dual distributive lattice of the bounded Priestley space
〈X, τ,≤A, 0, 1〉, it follows by Proposition 2.12 that there is x ∈ X such that
G = {U ∈ ClUp∗(X) : x ∈ U}. Then, it is clear that G ∩ A = θ(x). Now we
show that F = G ∩ A. It straightforward that F ⊆ G ∩ A. Let W ∈ G ∩ A.
Thus, there are U1, . . . , Un ∈ F such that U1 ∩ · · · ∩ Un ⊆ W. Then W =
(U1 ∪ W ) ∩ · · · ∩ (Un ∪ W ). Notice that each Ui ∪ W is in F . Hence W ∈ F .
Thus, we have G ∩ A ⊆ F . Hence F = θ(x).

• θ is continuous. Notice that the corresponding subbasic opens of the
space X (A(X)) are the form:

αA(X)(u) = {F ∈ Fipr(A(X)) : u ∈ F}
and

αA(X)(v)c = {F ∈ Fipr(A(X)) : v /∈ F}
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with u, v ∈ A. It is enough to show that for each u, v ∈ A, θ−1[αA(X)(u)] and
θ−1[αA(X)(v)c] are opens of X. Let u, v ∈ A and x ∈ X. Then

x ∈ θ−1[αA(X)(u)] ⇐⇒ θ(x) ∈ αA(X)(u) ⇐⇒ u ∈ θ(x) ⇐⇒ x ∈ u.

Hence θ−1[αA(X)(u)] = u. By a similar argument, θ−1[αA(X)(v)c] = vc. There-
fore, we have proved that θ is a homeomorphism.

• From the previous point, it follows that {θ[u] : u ∈ A} = {αA(u) : u ∈
A} = α[A]. �

5. Duality for the category of DN-algebras

Recall that DN is the algebraic category of DN-algebras and homomorphisms.
In the previous section, we show that the class of DN-algebras is categorically
equivalent (at object level) to the class of Priestley DN-spaces. In order to
extend this equivalence to a full dual categorical equivalence between the cat-
egory of DN-algebras and a certain category of Priestley DN-space, we need
to introduce the corresponding morphisms between Priestley DN-spaces.

Definition 5.1. Let X = 〈X, τ,A, 0X , 1X〉 and Y = 〈Y, η,B, 0Y , 1Y 〉 be Priest-
ley DN-spaces. A map f : X → Y is said to be a Priestley DN-morphism from
X to Y if f−1[V ] ∈ A, for all V ∈ B.

Let f : X → Y be a Priestley DN-morphism. By (S2), it follows that
f is continuous. From conditions (S3) and (S5), we obtain that f(0X) = 0Y

and f(1X) = 1Y . Moreover, from the definition of Priestley DN-morphism, it
follows that x1 ≤A x2 =⇒ f(x1) ≤B f(x2), for all x1, x2 ∈ X. That is, f is
order-preserving.

Notice that the usual composition of two Priestley DN-morphisms is a
Priestley DN-morphism. Hence, we can define the category PDNS of Priestley
DN-spaces and Priestley DN-morphisms.

Proposition 5.2. (1) Let X = 〈X, τ,A, 0X , 1X〉 and Y = 〈Y, η,B, 0Y , 1Y 〉 be
Priestley DN-spaces. If f : X → Y is a Priestley DN-morphism, then
f−1 : B → A is a homomorphism of DN-algebras from 〈A, m̃〉 to 〈B, m̃〉.

(2) Let A and B be DN-algebras. If h : A → B is a homomorphism, then
h−1 : X (B) → X (A) is a Priestley DN-morphism.

Proof. (1) Let v1, v2, v3 ∈ B. Then,

f−1(m̃(v1, v2, v3)) = f−1((v1 ∪ v3) ∩ (v2 ∪ v3))

= (f−1(v1) ∪ f−1(v3)) ∩ (f−1(v2) ∪ f−1(v3))

= m̃(f−1(v1), f−1(v2), f−1(v3)).

(2) First, notice that h−1 : Fipr(B) → Fipr(A) is a well-defined function
because h : A → B is a homomorphism. Now, let a ∈ A. We need to show that
(h−1)−1[αA(a)] ∈ αB[B]. Let G ∈ Fipr(B). Then,

G ∈ (h−1)−1[αA(a)] ⇐⇒ h−1(G) ∈ αA(a) ⇐⇒ a ∈ h−1(G)

⇐⇒ h(a) ∈ G ⇐⇒ G ∈ αB(h(a)).
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Hence (h−1)−1[αA(a)] = αB(h(a)) ∈ αB[B]. Therefore, h−1 : X (B) → X (A)
is a Priestley DN-morphism. �

Now we can define the corresponding functors. Let
(1) X : DN → PDNS be defined as follows:

• X (A) = 〈Fipr(A), τA, α[A], ∅, A〉, for each DN-algebra A;
• X (h) : X (B) → X (A) is given by X (h) = h−1, for each homomorphism

h : A → B of DN-algebras.
(2) A : PDNS → DN be defined as follows:

• A(X) = 〈A, m̃〉, for each Priestley DN-space X = 〈X, τ,A, 0, 1〉;
• A(f) : A(Y ) → A(X) is given by A(f) = f−1, for each Priestley DN-

morphism f : X → Y between Priestley DN-spaces.

Proposition 5.3. Let h : A → B be a homomorphism between DN-algebras and
let f : X → Y be a Priestley DN-morphism between Priestley DN-spaces. Then,
we have A(X (h)) ◦ αA = αB ◦ h and X (A(f)) ◦ θX = θY ◦ f.

Proof. Let a ∈ A and G ∈ Fipr(B). Then,

G ∈ A(X (h))(αA(a)) ⇐⇒ G ∈ X (h)−1(αA(a)) ⇐⇒ X (h)(G) ∈ αA(a)

⇐⇒ a ∈ h−1[G] ⇐⇒ h(a) ∈ G ⇐⇒ G ∈ αB(h(a)).

Hence, A(X (h))(αA(a))) = αB(h(a)). Let now x ∈ X and V ∈ B. Then,

V ∈ X (A(f))(θX(x)) ⇐⇒ V ∈ A(f)−1(θX(x)) ⇐⇒ f−1(V ) ∈ θX(x)

⇐⇒ f(x) ∈ V ⇐⇒ V ∈ θY (f(x)).

Hence, X (A(f))(θX(x)) = θY (f(x)). �

Now we are ready to establish the main result. The proof of this theorem
is a matter of putting together what we have developed and proved so far, and
thus we leave the details to the reader.

Theorem 5.4. The functors X : DN → PDNS and A : PDNS → DN are
dual equivalences of categories, and hence the categories DN and PDNS are
dually equivalent.

We end this section by establishing a connection between the categories
mentioned so far. First, let us define I : PDNS → BPS as follows. For every
Priestley DN-space X = 〈X, τ,A, 0, 1〉, I(X) = 〈X, τ,≤A, 0, 1〉. For every
Priestley DN-morphism f : X → Y, let I(f) = f. By Proposition 4.2 and from
Definition 5.1, it follows that I is a functor. Now we consider the following
diagram.

DN DL

PDNS BPS

X

L

I

P
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We will show that the above diagram commutes. In order to accomplish this,
notice first that for all A ∈ DN ,

(P ◦ L)(A) = 〈Fipr(L(A)), τL(A),⊆, ∅,L(A)〉
and

(I ◦ X )(A) = 〈Fipr(A), τA,⊆, ∅, A〉.
Now we define Ψ: (P ◦ L) → (I ◦ X ) as follows: for every A ∈ DN ,

ΨA : (P ◦ L)(A) → (I ◦ X )(A)

is defined by

ΨA(G) = e−1
A [G],

for each G ∈ Fipr(L(A)).

Proposition 5.5. Ψ: (P ◦ L) → (I ◦ X ) is a natural isomorphism.

Proof. We need to prove that: (1) ΨA is an isomorphism of the category BPS,
for all A ∈ DN ; and (2) for each Priestley DN-morphism h : A → B of the
category DN , the following diagram commutes:

(P ◦ L)(A) (I ◦ X )(A)

(P ◦ L)(B) (I ◦ X )(B)

ΨA

(P ◦ L)(h)

ΨB

(I ◦ X )(h)

(1) Let A ∈ DN . By Proposition 3.8, the map ΨA : Fipr(L(A)) →
Fipr(A) is an order-isomorphism. By Lemma 3.9, it follows that ΨA is a con-
tinuous map from the space 〈Fipr(L(A)), τL(A)〉 onto the space 〈Fipr(A), τA〉.
Hence, ΨA is an isomorphism of the category BPS from space (P ◦L)(A) onto
the space (I ◦ X )(A).

(2) Let h : A → B be Priestley DN-morphism. Let H ∈ Fipr(L(B)) and
a ∈ A. Then, by Proposition 3.5, we obtain that

a ∈ (ΨA ◦ (P ◦ L)(h)) (H) ⇐⇒ a ∈ ΨA (P(L(h))(H))

⇐⇒ a ∈ ΨA

(L(h)−1[H]
)

⇐⇒ a ∈ e−1
A

[L(h)−1[H]
]

⇐⇒ L(h) (eA(a)) ∈ H

⇐⇒ eB(h(a)) ∈ H

⇐⇒ a ∈ h−1
[

e−1
B [H]

]

⇐⇒ a ∈ X (h)
(

e−1
B [H]

)

⇐⇒ a ∈ I(X (h))
(

e−1
B [H]

)

⇐⇒ a ∈ (I ◦ X )(h)(ΨB(H))
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⇐⇒ a ∈ ((I ◦ X )(h) ◦ ΨB) (H).

Hence, ΨA ◦ (P ◦ L)(h) = (I ◦ X )(h) ◦ ΨB. �

6. Dual descriptions

6.1. Dual description for filters

Let 〈X, τ,A, 0, 1〉 be a Priestley DN-space. Let CUp∗(X) be the lattice of all
nonempty closed upsets of X. Let A be a DN-algebra and 〈X, τ,A, 0, 1〉 its
dual Priestley DN-space. We define the map C : Fi(A) → CUp∗(X) as follows:

C(F ) =
⋂

{α(a) : a ∈ F},

for every F ∈ Fi(A). Notice that C(F ) = {P ∈ Fipr(A) : F ⊆ P}.

Proposition 6.1. The lattice Fi(A) (ordered by ⊇) of A is isomorphic to the
lattice CUp∗(X).

Proof. We will show that the map C : Fi(A) → CUp∗(X) is an order-
isomorphism. It is clear that for all F,G ∈ Fi(A), F ⊆ G implies that
C(G) ⊆ C(F ). Now let F,G ∈ Fi(A) and assume that C(G) ⊆ C(F ). Suppose
by contradiction that F � G. Then, there is a ∈ F and a /∈ G. By Theo-
rem 2.6, there exists P ∈ Fipr(A) such that G ⊆ P and a /∈ P. Since a ∈ F
and P /∈ α(a), it follows that P /∈ C(F ). On the other hand, G ⊆ P implies
that P ∈ C(G) and thus, P ∈ C(F ). A contradiction. Hence F ⊆ G. We
have proved that C is an order-embedding. Now we show that C is onto. Let
F ∈ CUp∗(X). Let F := {a ∈ A : F ⊆ α(a)}. It is straightforward that F
is a filter of A. Let P ∈ C(F ). Thus F ⊆ P. Suppose that P /∈ F . Since F
is an upset, it follows that for every Q ∈ F , Q � P. Then, for every Q ∈ F ,
there is aQ ∈ A such that aQ ∈ Q\P. It follows that F ⊆ ⋃{α(aQ) : Q ∈ F}.
Since F is compact, there are aQ1 , . . . , aQn

∈ A with Q1, . . . , Qn ∈ F such
that F ⊆ α(aQ1)∪· · ·∪α(aQn

) and aQ1 , . . . , aQn
/∈ P. Let a = aQ1 ∨· · ·∨aQn

.
Then, a /∈ P and F ⊆ α(a). Thus, a /∈ P implies that a /∈ F, and F ⊆ α(a)
implies a ∈ F. A contradiction. Hence, we obtain that C(F ) ⊆ F . Now let
P ∈ F . Let a ∈ F. By definition of F, F ⊆ α(a). Then P ∈ α(a). It follows
that, P ∈ ⋂{α(a) : a ∈ F} = C(F ). Hence F ⊆ C(F ). Therefore, C is onto.
This completes the proof. �

6.2. Dual description for congruences

Let A = 〈A,m〉 be a DN-algebra and 〈X, τ,A, 0, 1〉 its dual Priestley DN-
space. Let Con(A) be the lattice of congruences of A and C(X) the lattice
of closed subsets of X. Our aim here is to show that the lattices Con(A) and
C(X) are dually isomorphic.

It is known that a relation θ ⊆ A × A is a congruence of A if and only
if it is a congruence with respect to ∨, and for all a1, a2, b1, b2 ∈ A, if a1 ∧ b1
and a2 ∧ b2 exist in A and (a1, a2), (b1, b2) ∈ θ, then (a1 ∧ b1, a2 ∧ b2) ∈ θ.

For every subset Y ⊆ X, we define the relation θY ⊆ A × A as follows:

θY = {(a, b) ∈ A × A : ∀P ∈ Y (a ∈ P ⇐⇒ b ∈ P )}.
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Notice that θY = {(a, b) ∈ A × A : α(a) ∩ Y = α(b) ∩ Y }. It is straightforward
to show that θY ∈ Con(A). We need the following lemma. For every Y ⊆ X,
let clX(Y ) be the topological closure of Y in the space X.

Lemma 6.2. Let Y,Z ⊆ X. Then, θZ ⊆ θY if and only if Y ⊆ clX(Z).

Proof. (⇒) Assume that θZ ⊆ θY . Suppose that Y � clX(Z). So, there is
P ∈ Y \clX(Z). Then, P ∈ clX(Z)c. Thus, there are a1, . . . , an, b ∈ A such
that P ∈ α(a1) ∩ . . . α(an) ∩ α(b)c ⊆ clX(Z)c. Thus

α(a1) ∩ · · · ∩ α(an) ∩ α(b)c ∩ Z = ∅. (6.1)

Let us show that ((a1 ∨ b) ∧ · · · ∧ (an ∨ b), b) ∈ θZ . Let Q ∈ Z. If (a1 ∨ b) ∧
· · · ∧ (an ∨ b) ∈ Q, then ai ∨ b ∈ Q, for all i = 1, . . . , n. Since Q is a prime
filter and by (6.1), it follows that b ∈ Q. On the other hand, if b ∈ Q, then
ai ∨ b ∈ Q, for all i = 1, . . . , n. Then (a1 ∨ b) ∧ · · · ∧ (an ∨ b) ∈ Q. Hence,
((a1 ∨ b) ∧ · · · ∧ (ab ∨ b), b) ∈ θZ . Now, since P ∈ α(a1) ∩ · · · ∩ α(an) ∩ α(b)c,
we obtain that a1, . . . , an ∈ P and b /∈ P. Thus, ai ∨ b ∈ P, for all i =
1, . . . , n. Then, we have that (a1 ∨ b) ∧ · · · ∧ (an ∨ b) ∈ P and b /∈ P. Hence
((a1 ∨ b) ∧ · · · ∧ (an ∨ b), b) /∈ θY . A contradiction. Therefore, Y ⊆ clX(Z).

(⇐) Assume that Y ⊆ clX(Z). Let (a, b) /∈ θY . So, there is P ∈ Y such
that a ∈ P and b /∈ P (or a /∈ P and b ∈ P ). Then α(a) ∩ α(b)c ∩ clX(Z) �= ∅.
Thus, α(a) ∩ α(b)c ∩ Z �= ∅. Let Q ∈ α(a) ∩ α(b)c ∩ Z. Then, we have that
Q ∈ Z, a ∈ Q and b /∈ Q. Hence (a, b) /∈ θZ . Therefore, θZ ⊆ θY . �

Proposition 6.3. The lattices Con(A) and C(X) are dually isomorphic.

Proof. We define R : C(X) → Con(A) as follows: for every Y ∈ C(X), R(Y ) =
θY . Let Y,Z ∈ C(X). By Lemma 6.2, it follows that Y ⊆ Z if and only if
θZ ⊆ θY . Then, R is a dual order-embedding. Now we show that R is onto. Let
θ ∈ Con(A). Consider the quotient DN-algebra A/θ and the natural projection
π : A → A/θ. Let X (A/θ) be the dual Priestley DN-space of the DN-algebra
A/θ. We have that the map X (π) = π−1 : X (A/θ) → X is a Priestley DN-
morphism. In particular, X (π) is continuous. Since the spaces X and X (A/θ)
are Hausdorff and compact, it follows that Y := X (π)[X (A/θ)] ∈ C(X). Notice
that

Y = {π−1[G] : G ∈ Fipr(A/θ)}.

Now let us show that θ = θY . Let (a, b) ∈ θ and Q ∈ Y. Thus, there is
G ∈ Fipr(A/θ) such that Q = π−1[G]. Then, a ∈ Q ⇐⇒ π(a) ∈ G ⇐⇒
π(b) ∈ G ⇐⇒ b ∈ Q. Hence (a, b) ∈ θY . Let (a, b) /∈ θ. Without loss of
generality we can assume that π(a) �A/θ π(b). Thus, by Corollary 2.7, there
is G ∈ Fipr(A/θ) such that π(a) ∈ G and π(b) /∈ G. Then a ∈ π−1[G],
b /∈ π−1[G] and π−1[G] ∈ Y. It follows that (a, b) /∈ θY . Hence, we have proved
that θ = θY . Therefore, R is onto. �

6.3. Dual description for subalgebras

The aim here is to obtain a topological description of certain kinds of subalge-
bras of a DN-algebra. This topological description is a generalization of what
happens in the context of distributive lattices, where there is a correspondence
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between sublattices of a distributive lattice and the Priestley quotients of the
dual Priestley space of the lattice, see [31,20].

We start with one of the main notions of this subsection.

Definition 6.4. Let A = 〈A,m〉 be a DN-algebra. We will said that B ⊆ A is
a strong-subalgebra of A if for all b1, b2 ∈ B,

(1) b1 ∨ b2 ∈ B;
(2) If b1 ∧ b2 exists in A, then b1 ∧ b2 ∈ B.

It is straightforward to show that every strong-subalgebra of a DN-
algebra A is in fact a subalgebra of A. But the converse is not true.

From now on, let A = 〈A,m〉 be a DN-algebra and 〈X, τ,A, 0, 1〉 its dual
Priestley DN-space. Recall that X = Fipr(A), τ = τA, A = α[A], and for each
a ∈ A, α(a) = {x ∈ X : a ∈ x}. Moreover, ≤A = ⊆ .

Let S ⊆ A. We define the binary relation �S ⊆X × X as follows: for all
x, y ∈ X,

x �S y ⇐⇒ ∀a ∈ S(a ∈ x =⇒ a ∈ y).

Notice that

x �S y ⇐⇒ S ∩ x ⊆ S ∩ y ⇐⇒ ∀a ∈ S(x ∈ α(a) =⇒ y ∈ α(a)).

It is straightforward to show that �S is a quasiorder on X. Moreover, it is
important to note that ≤A ⊆ �S .

Now we introduce the second main notion.

Definition 6.5. Let 〈X, τ,A, 0, 1〉 be a Priestley DN-space. A quasiorder � on
X is said to be A-compatible when for all x, y ∈ X, if x � y, then there is a
�-upset U ∈ A such that x ∈ U and y /∈ U.

Proposition 6.6. For each S ⊆ A, the quasiorder �S is A-compatible.

Proof. Let x, y ∈ X and suppose that x �S y. By definition of �S , there is
a ∈ S such that a ∈ x and a /∈ y. Thus x ∈ α(a) and y /∈ α(a). We know that
α(a) ∈ A. Let us see that α(a) is �S-upset. Let z, w ∈ X be such that z �S w
and z ∈ α(a). Then, S ∩ z ⊆ S ∩ w and a ∈ z. Thus a ∈ w. That is w ∈ α(a).
Hence α(a) ∈ A is �S-upset. �

It is easy to check that for all S, T ⊆ A, S ⊆ T implies that �T ⊆ �S .
Now let R ⊆ X × X. We define the following subset of A:

BR = {a ∈ A : ∀(x, y) ∈ R(a ∈ x =⇒ a ∈ y)}.

Proposition 6.7. For each R ⊆ X × X, BR is a strong-subalgebra of A.

Proof. Let a, b ∈ BR.
• Let (x, y) ∈ R and suppose that a∨b ∈ x. Since x is a prime filter of A,

it follows that a ∈ x or b ∈ x. Suppose that a ∈ x (analogously if b ∈ x). Since
a ∈ BR and (x, y) ∈ R, we have that a ∈ y. Then a ∨ b ∈ y. Hence a ∨ b ∈ BR.

• Suppose a ∧ b exists in A. Let (x, y) ∈ R and suppose that a ∧ b ∈ x.
Since x is a filter of A, we obtain that a, b ∈ x. Given that a ∈ BR and
(x, y) ∈ R, we have a ∈ y. Similarly, b ∈ y. Then a∧ b ∈ y because y is a filter.
Hence a ∧ b ∈ BR. Therefore, BR is a strong-subalgebra of A. �
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It is clear that for all R1, R2 ⊆ X ×X, R1 ⊆ R2 implies that BR1 ⊆ BR2 .

Proposition 6.8. If B is a strong-subalgebra of A, then B�B
= B.

Proof. Let b ∈ B. Let x, y ∈ X be such that x �B y. Suppose b ∈ x. By
definition of �B , we have that b ∈ y. Then b ∈ B�B

. Hence B ⊆ B�B
. Let

now a ∈ B�B
. Let y ∈ X be such that a /∈ y. For each x ∈ X such that a ∈ x,

we have that x �B y. Thus, by definition of �B , there is bx ∈ B such that
bx ∈ x and bx /∈ y. Then,

α(a) ⊆
⋃

{α(bx) : x ∈ X and a ∈ x}.

By compactness of α(a), we obtain that α(a) ⊆ α(bx1) ∪ · · · ∪ α(bxn
) with

bx1 , . . . , bxn
∈ B and bx1 , . . . , bxn

/∈ y. Let by := bx1 ∨ · · · ∨ bxn
. Since B is a

strong-subalgebra, it follows that by ∈ B. Moreover α(a) ⊆ α(by) and by /∈ y.
We have proved that for every y ∈ X such that a /∈ y, there is by ∈ B such
that by /∈ y and α(a) ⊆ α(by) (which implies that a ≤ by). Then,

α(a) =
⋂

{α(by) : y ∈ X and a /∈ y}.

By compactness of α(a)c, α(a) = α(by1)∩· · ·∩α(bym
). Since a ≤ by1 , . . . , bym

, it
follows that by1∧· · ·∧bym

exists in A. Then, given that B is a strong-subalgebra,
by1 ∧ · · · ∧ bym

∈ B. Hence, α(a) = α(by1) ∩ · · · ∩ α(bym
) = α(by1 ∧ · · · ∧ bym

).
This implies that a = by1 ∧ · · · ∧ bym

∈ B. Therefore, B�B
⊆ B. �

Proposition 6.9. If � is an A-compatible quasiorder on X, then �B� = � .

Proof. Let x � y. Let b ∈ B� and suppose that b ∈ x. Then, it follows by
definition of B� that b ∈ y. Hence x �B� y. Conversely, suppose that x �B� y.
This means that ∀b ∈ B�(b ∈ x =⇒ b ∈ y). Suppose by contradiction that
x � y. Since � is A-compatible, there exists an �-upset U ∈ A such that
x ∈ U and y /∈ U. Given that U ∈ A, there is a ∈ A such that U = α(a). Now
we show that a ∈ B�. Let z � w and suppose that a ∈ z. Thus z ∈ α(a).
Since α(a) is �-upset, it follows that w ∈ α(a). That is, a ∈ w. Then a ∈ B�.
Summarizing, we have that a ∈ B�, a ∈ x and a /∈ y. A contradiction. Hence
x � y. �

Now by the previous results, we have the following.

Theorem 6.10. The set of all strong-subalgebras of A ordered by ⊆ is isomor-
phic to the set of all A-compatible quasiorders on X ordered by ⊇ under the
maps B �→ �B and � �→B�.

Remark 6.11. Notice that in the definition of strong-subalgebra we allow that
the empty set be a strong-subalgebra of A. The greatest A-compatible qua-
siorder of the Priestley DN-space 〈X, τ,A, 0, 1〉 is X × X. Its corresponding
strong-subalgebra is BX×X = ∅. On the other hand, the least A-compatible
quasiorder on X is ≤A = ⊆ and its corresponding strong-subalgebra is
B≤A = A.
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Now let us show that the A-compatible quasiorders on a Priestley DN-
space X correspond to quotients spaces of X.

Let 〈X, τ,A, 0, 1〉 be a Priestley DN-space and � an A-compatible qua-
siorder on X. Let A� = {U ∈ A : U is an � -upset}. Let ≡ = � ∩ � .
It is clear that ≡ is equivalence relation on X. Let q : X → X/≡ be the
natural map. We consider the quotient space 〈X/≡, τ≡〉 of 〈X, τ〉. That is,
τ≡ = {V ⊆ X/≡ : q−1[V ] ∈ τ}. Now we define

A≡ = {V ⊆ X/≡ : q−1[V ] ∈ A�}.

We want to prove that the structure 〈X/≡, τ≡,A≡, 0/≡, 1/≡〉 is a Priestley
DN-space. Before that, we need some auxiliaries results.

Proposition 6.12. Let U,U1, U2 ∈ A�.

(1) q(z) ∈ q[U ] if and only if z ∈ U.
(2) q−1[q[U ]] = U.
(3) q[U1 ∩ U2] = q[U1] ∩ q[U2].

Proof. (1) is straightforward. (2) and (3) are consequence of (1). �

Lemma 6.13. Let 〈X, τ〉 be a topological space and let B ⊆ τ be such that
B ∪ {U c : U ∈ B} is a subbasis for τ. If A ⊆ τ is such that for each U ∈ B,
U = V1∩· · ·∩Vn for some V1, . . . , Vn ∈ A, then A∪{V c : V ∈ A} is a subbasis
for τ.

Proof. We leave the details to the reader. �

Proposition 6.14. A≡ ∪ {W c : W ∈ A≡} is a subbasis for the topology τ≡.

Proof. Notice that � is a compatible quasiorder of the bounded Priestley space
〈X, τ,≤A, 0, 1〉 (see [20,31]). Then, the ordered quotient space 〈X/≡, τ≡,≤≡
, 0/≡, 1/≡〉 is a bounded Priestley space (see [20,31]), where q(x) ≤≡ q(y) ⇐⇒
x � y. Thus, we know that ClUp∗(X/≡) ∪ {W c : W ∈ ClUp∗(X/≡)} is a
subbasis for τ≡. Let us use Lemma 6.13 in order to prove this proposition.

Let W ∈ ClUp∗(X/≡). Since q : X → X/≡ is continuous and order-
preserving from 〈X, τ,�〉 onto 〈X/≡, τ≡,≤≡〉, it follows that q−1[W ] is a
proper and nonempty clopen �-upset of X. Let y /∈ q−1[W ]. For each x ∈
q−1[W ], we have x � y. Thus, for each x ∈ q−1[W ], there is Ux ∈ A� such
that x ∈ Ux and y /∈ Ux. Then,

q−1[W ] ⊆
⋃

{Ux : x ∈ q−1[W ]}.

Since q−1[W ] is compact, it follows that q−1[W ] ⊆ Ux1 ∪· · ·∪Uxn
. Notice that

Uy := Ux1 ∪ · · · ∪ Uxn
∈ A�. Thus, we have proved that for every y /∈ q−1[W ],

there is Uy ∈ A� such that y /∈ Uy and q−1[W ] ⊆ Uy. Then,

q−1[W ] =
⋂

{Uy : y /∈ q−1[W ]}.

By compactness of q−1[W ]c, it follows that q−1[W ] = Uy1 ∩ · · · ∩ Uym
. By

Proposition 6.12, we obtain that

W = q
[

q−1[W ]
]

= q[Uy1 ∩ · · · ∩ Uym
] = q[Uy1 ] ∩ · · · ∩ q[Uym

].
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Notice, by Proposition 6.12, that q−1
[

q[Uyj
]
]

= Uyj
∈ A�, for all j = 1, . . . ,m.

Then, q[Uyj
] ∈ A≡, for all j = 1, . . . ,m. Hence, W is a finite intersection of

elements of A≡. Therefore, by Lemma 6.13, A≡∪{W c : W ∈ A≡} is a subbasis
of τ≡. �

Proposition 6.15. Let 〈X, τ,A, 0, 1〉 be a Priestley DN-space and � an A-
compatible quasiorder on X. Then, 〈X/≡, τ≡,A≡, 0/≡, 1/≡〉 is a Priestley DN-
space. Moreover, q : X → X/≡ is an onto Priestley DN-space.

Proof. (S1) Since q : X → X/≡ is continuous and X is compact, it follows that
X/≡ = q[X] is compact.

(S2) It was proved in Proposition 6.14.
(S3) Let W ∈ A≡. Thus q−1[W ] ∈ A�. Then 0 /∈ q−1[W ] and 1 ∈ q−1[W ].

Thus 0/≡ /∈ W and 1/≡ ∈ W. Hence 0/≡ /∈ ⋃ A≡ and 1/≡ ∈ ⋂ A≡.
(S4) W1,W2,W3 ∈ A≡. Thus q−1[Wi] ∈ A� for i = 1, 2, 3. Then

q−1[(W1 ∪ W3) ∩ (W2 ∪ W3)] = (q−1[W1] ∪ q−1[W3]) ∩ (q−1[W2] ∪ q−1[W3]) ∈ A�.

Hence, (W1 ∪ W3) ∩ (W2 ∪ W3) ∈ A≡.
(S5) Let x/≡, y/≡ ∈ X/≡ be distinct. Then x � y or y � x. Without

loss of generality assume that x � y. Thus there is U ∈ A� such that x ∈ U
and y /∈ U. By Proposition 6.12, it follows that q[U ] ∈ A≡, x/≡ ∈ q[U ] and
y /∈ q[U ]. This completes the proof. �

Corollary 6.16. Let 〈X, τ,A, 0, 1〉 be a Priestley DN-space and � an A-compatible
quasiorder on X. Then,

〈B�, m̃〉 = 〈A�, m̃〉 ∼= 〈A≡, m̃〉.
Proof. For each of the algebras above, the operation m̃ is given by:

m̃(U, V,W ) = (U ∪ W ) ∩ (V ∪ W ).

Recall that

B� = {U ∈ A : ∀(x, y) ∈� (x ∈ U =⇒ y ∈ U)}
and

A� = {U ∈ A : U is � -upset}.

Hence, it is clear that 〈B�, m̃〉 = 〈A�, m̃〉. On the other hand, given that the
map q−1 : A≡ → A� preserves unions and intersections, then it is a homomor-
phism of DN-algebras. Since q is onto and by Proposition 6.12, it follows that
q−1 is bijective. Hence, q−1 is an isomorphism from 〈A≡, m̃〉 onto 〈A�, m̃〉.

�

Hence, notice that if A is a DN-algebra with dual Priestley DN-space
〈X, τ,A, 0, 1〉 and B is a strong-subalgebra of A, then the quotient structure
〈X/≡B , τ≡B

,A≡B
, 0/≡B , 1/≡B〉 is the dual Priestley DN-space of B, where

≡B = �B ∩ �B .
We close this section proving the converse of Proposition 6.15.
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Proposition 6.17. Let h : X → Y be an onto Priestley DN-morphism from
〈X, τ,A, 0, 1〉 onto 〈Y, η,B, 0, 1〉. Then, the relation �h on X defined by x �h

x′ ⇐⇒ h(x) ≤B h(x′) is an A-compatible quasiorder on X. Moreover,
〈Y, η,B, 0, 1〉 ∼= 〈X/≡h, τ≡h

,A≡h
, 0/≡h, 1/≡h〉, where ≡h = �h ∩ �h .

Proof. First, we show that �h is an A-compatible quasiorder on X. It is clear
that �h is a quasiorder. Let x1, x2 ∈ X be such that x1 �h x2. Thus h(x1) �B
h(x2). Then, there is V ∈ B such that h(x1) ∈ V and h(x2) /∈ V. That is,
x1 ∈ h−1[V ], x2 /∈ h−1[V ] and h−1[V ] ∈ A. Now we prove that h−1[V ] is
an �h-upset. Let x, x′ ∈ X be such that x �h x′ and x ∈ h−1[V ]. Thus
h(x) ≤B h(x′) and h(x) ∈ V. Since V ∈ B, it follows that V is ≤B-upset. Then
x′ ∈ h−1[V ]. Hence �h is A-compatible.

Let ̂h : X/≡h → Y be defined by ̂h(x/≡h) = h(x). It is a routine matter to
show that ̂h is well-defined and bijective. Now we show that ̂h is a Priestley DN-
morphism from 〈X/≡h, τ≡h

,A≡h
, 0/≡h, 1/≡h〉 to 〈Y, η,B, 0, 1〉. Let V ∈ B. We

need to show that ̂h−1[V ] ∈ A≡h
= {W ⊆ X/≡h : q−1[W ] ∈ A�h

}, where
q : X → X/≡h is the natural map. Let x ∈ X. Then,

x ∈ q−1
[

̂h−1[V ]
]

⇐⇒ q(x) ∈ ̂h−1[V ] ⇐⇒ ̂h(x/≡h) ∈ V

⇐⇒ h(x) ∈ V

⇐⇒ x ∈ h−1[V ].

Hence, q−1
[

̂h−1[V ]
]

= h−1[V ] ∈ A�h
. Therefore, ̂h is an isomorphism of the

category PDNS. �

From what we have just proved, we can say that the A-compatible qua-
siorders on a Priestley DN-space 〈X, τ,A, 0, 1〉 give an intrinsic description of
the Priestley DN-spaces Y which are quotients of X, that is, for which exists
an onto Priestley DN-morphism h : X → Y.
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