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1. Introduction and preliminaries. The distributivity of a lattice L =
〈L,∨,∧〉 can be characterized through some special subsets: if a, b ∈ L, the an-

nihilator of a relative to b is defined as the set 〈a, b〉 = {x ∈ L : x ∧ a ≤ b}. A
well known result given by Mandelker in [19] asserts that L is distributive if and
only if 〈a, b〉 is an ideal of L, for all a, b ∈ L. Then, this result was extended by
Varlet to the class of distributive semilattices ([20]), and by Chajda and Kolař́ık
to the class of distributive nearlattices ([9]). The distributive nearlattices have
been studied by several authors in [2, 6, 7, 10, 13, 14, 15, 16, 17, 18], and they
are a natural generalization of implication algebras, in the sense of [1], and also of
bounded distributive lattices. In [4], the authors presented an alternative definition
of relative annihilator in distributive nearlattices different from that given in [9],
and established new equivalences of the distributivity of a nearlattice. Later, using
the results developed in [4], a particular class of filters and annihilator-preserving
congruence relations were studied in [3, 5].

The class of normal distributive nearlattices was introduced in [4], which gen-
eralize the class of normal lattices given by Cornish in [11, 12]. There is a strong
connection between normal distributive nearlattices and the set of its annihilators.
For example, in [3] it is proved that there is a correspondence between a class of
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filters (called α-filters) of a normal distributive nearlattice and the filters of the dis-
tributive nearlattice of the annihilators. The aim of this note is to introduce and
study the classes of α-ideals and α-congruences in a normal distributive nearlattice,
and prove that they are in a one-to-one correspondence with the classes of ideals
and congruences of the distributive nearlattice of the annihilators, respectively.

The paper is organized as follows. In this section we give some definitions and
basic results about distributive nearlattices which are needed in the rest of the
paper. In Section 2, we introduce the α-ideals in distributive nearlattices. We
prove a separation theorem between ideals and α-filters by means of prime α-ideals
and we see the relationship between α-ideals in a normal distributive nearlattice
and ideals of the distributive nearlattice of the annihilators. In Section 3, we study
α-congruences, and we also prove that there is a one-to-one correspondence between
the α-congruences of a normal distributive nearlattice and the congruences of the
distributive nearlattice of the annihilators.

Let A = 〈A,∨, 1〉 be a join-semilattice with greatest element. A filter is a
subset F of A such that 1 ∈ F , if a ≤ b and a ∈ F , then b ∈ F and if a, b ∈ F ,
then a ∧ b ∈ F , whenever a ∧ b exists. Denote by Fi(A) the set of all filters of
A. If X is a non-empty subset of A, the smallest filter containing X is called
the filter generated by X and will be denoted by Fig(X). A filter G is said to
be finitely generated if G = Fig(X), for some finite non-empty subset X of A. If
X = {a}, then Fig({a}) = [a) = {x ∈ A : a ≤ x} called the principal filter of a.
A subset I of A is called an ideal if a ≤ b and b ∈ I, then a ∈ I and if a, b ∈ I,
then a ∨ b ∈ I. If X is a non-empty set of A, the smallest ideal containing X is
called the ideal generated by X and will be denoted by Idg(X). It follows that
Idg(X) = {a ∈ A : ∃x1, . . . , xn ∈ X (a ≤ x1 ∨ . . . ∨ xn)}. A non-empty proper
ideal P is prime if for every a, b ∈ A, a ∧ b ∈ I implies a ∈ I or b ∈ I, whenever
a ∧ b exists. We denote by Id(A) and X(A) the set of all ideals and prime ideals
of A, respectively. It is clear that Id(A) is an algebraic closure system, and thus
Id(A) = 〈Id(A),⊆〉 is a complete lattice. Finally, a non-empty ideal I of A is
maximal if it is proper and for every J ∈ Id(A), if I ⊆ J , then J = I or J = A.
Denote by Xm(A) the set of all maximal ideals of A.

The class of distributive nearlattices can be presented in two equivalent ways:
as join-semilattices with greatest element that satisfy some property or as algebras
with only one ternary connective satisfying some identities. The two different ways
to consider distributive nearlattices are useful for different purposes.

Definition 1.1. Let A be a join-semilattice with greatest element. We say that A
is a distributive nearlattice if each principal filter is a bounded distributive lattice.

Distributive nearlattices are in a one-to-one correspondence with certain ternary
algebras satisfying some identities. This fact was proved in [18, 10], and in [2] the
authors found a smaller equational base for the ternary algebras.

Theorem 1.2. ([2, 10]) Let A = 〈A,∨, 1〉 be a distributive nearlattice. Let

m : A3 → A be the ternary operation given by m(x, y, z) = (x ∨ z) ∧z (y ∨ z),
where ∧z denotes the meet in [z). Then the structure A∗ = 〈A,m, 1〉 satisfies the
following identities:
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(1) m(x, x, 1) = 1,

(2) m(x, y, x) = x,

(3) m(m(x, y, z),m(y,m(u, x, z), z), w) = m(w,w,m(y,m(x, u, z), z)),

(4) m(x,m(y, y, z), w) = m(m(x, y, w),m(x, y, w),m(x, z, w)).

Conversely, let A = 〈A,m, 1〉 be an algebra of type (3, 0) satisfying the identities

(1)− (4). If we define the binary operation x∨ y = m(x, x, y), then A∗ = 〈A,∨, 1〉
is a distributive nearlattice. Moreover, (A∗)

∗ = A and (A∗)∗ = A.

Example 1.3. Each bounded distributive lattice is a distributive nearlattice. Also,
every implication algebra, in the sense of [1], is a distributive nearlattice.

Remark 1.4. If A is a distributive nearlattice, then Xm(A) ⊆ X(A). Let a, b ∈ A
and U ∈ Xm(A) be such that a ∧ b exists and a ∧ b ∈ U . Suppose that a /∈ U and
b /∈ U . Then U = Idg (U ∪ {a}) ∩ Idg (U ∪ {b}). Indeed, if x ∈ Idg (U ∪ {a}) ∩
Idg (U ∪ {b}), then there are u1, u2 ∈ U such that x ≤ u1 ∨ a and x ≤ u2 ∨ b.
Thus, u = u1 ∨ u2 ∈ U and since [x) is a bounded distributive lattice, we have
x ≤ (u ∨ a) ∧ (u ∨ b) = u ∨ (a ∧ b). As a ∧ b ∈ U , it follows that x ∈ U . The
other inclusion is immediate. On the other hand, since U ⊂ Idg (U ∪ {a}), U ⊂
Idg (U ∪ {b}) and U is maximal, we have Idg (U ∪ {a}) = Idg (U ∪ {b}) = A and
U = A, which is a contradiction because U is proper. Therefore, Xm(A) ⊆ X(A).

Let A be a distributive nearlattice. We consider Fi(A) = 〈Fi(A),⊻,∩, {1}, A〉,
where the least element is {1}, the greatest element is A, and for eachG,H ∈ Fi(A),
we have G ⊻H = Fig(G ∪H).

Theorem 1.5. ([13]) LetA be a distributive nearlattice. Then Fi(A) is a bounded
distributive lattice.

Theorem 1.6. ([17]) Let A be a distributive nearlattice. Let I ∈ Id(A) and

F ∈ Fi(A) be such that I ∩ F = ∅. Then there exists P ∈ X(A) such that I ⊆ P
and P ∩ F = ∅.

The following definition was given in [4] as an alternative to [9].

Definition 1.7. Let A be a join-semilattice with greatest element and a, b ∈ A.
The annihilator of a relative to b is the set

a ◦ b = {x ∈ A : b ≤ x ∨ a}.

In particular, a⊤ = a ◦ 1 = {x ∈ A : x ∨ a = 1} is called the annihilator of a.

If A is a distributive nearlattice, then a ◦ b ∈ Fi(A), for all a, b ∈ A ([4]). Let
a ∈ A and we consider

a⊤⊤ = {y ∈ A : ∀x ∈ a⊤ (y ∨ x = 1)} =
⋂

{x⊤ : x ∈ a⊤}.

Notice that a⊤ and a⊤⊤ are filters of A, for all a ∈ A.
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Lemma 1.8. ([3, 4]) Let A be a distributive nearlattice. Let a, b ∈ A and I ∈
Id(A). The following properties are satisfied:

(1) a ≤ b implies a⊤ ⊆ b⊤.

(2) a⊤ ⊆ b⊤ if and only if b⊤⊤ ⊆ a⊤⊤.

(3) (a ∧ b)⊤ = a⊤ ∩ b⊤, whenever a ∧ b exists.

(4) I ∩a⊤ = ∅ if and only if there exists U ∈ Xm(A) such that I ⊆ U and a ∈ U .

(5) If U ∈ Id(A), then U ∈ Xm(A) if and only if ∀a ∈ A
(

a /∈ U ⇔ U ∩ a⊤ 6= ∅
)

.

(6) If U ∈ Xm(A), then ∀a ∈ A
(

a /∈ U ⇔ U ∩ a⊤⊤ = ∅
)

.

We are interested in studying the class of normal distributive nearlattices in-
troduced in [4], which are a generalization of the normal lattices given in [11].

Definition 1.9. Let A be a distributive nearlattice. We say that A is normal if
each prime ideal is contained in a unique maximal ideal.

Theorem 1.10. ([4]) Let A be a distributive nearlattice. Then A is normal if

and only if (a ∨ b)
⊤
= a⊤ ⊻ b⊤, for all a, b ∈ A.

Let A be a normal distributive nearlattice, and consider the set R(A) = {a⊤ : a
∈ A}. Note that R(A) ⊆ Fi(A). If we define m : R(A)3 → R(A) by m

(

a⊤, b⊤, c⊤
)

=
(

a⊤ ⊻ c⊤
)

∩
(

b⊤ ⊻ c⊤
)

, then by Lemma 1.8 and Theorem 1.10, the structure

R(A) = 〈R(A),m,A〉

is a distributive nearlattice, and it is called the distributive nearlattice of the annihi-
lators of A (for more details see [3]). Let us denote by Fi(R(A)) = 〈Fi(R(A)),⊔,∩〉
the distributive lattice of filters of R(A).

2. α-ideals. The main aim of this section is to introduce the class of α-ideals
in distributive nearlattices and prove that there is a one-to-one correspondence
between α-ideals of a normal distributive nearlattice and ideals of the distributive
nearlattice of the annihilators.

Definition 2.1. Let A be a distributive nearlattice and I ∈ Id(A). We say that
I is an α-ideal if for each a ∈ A, I ∩ a⊤⊤ 6= ∅ implies a ∈ I.

Denote by Idα(A) and Xα(A) the set of all α-ideals and prime α-ideals of A,
respectively. We consider the structure Idα(A) = 〈Idα(A),⊆〉.

Example 2.2. Every maximal ideal of a distributive nearlattice is an α-ideal.
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Example 2.3. Let A be a distributive nearlattice. An element a ∈ A is dense if
a⊤ = {1}. Denote by D(A) the set of all dense elements of A. By Lemma 1.8,
we have D(A) ∈ Id(A). Also, D(A) is an α-ideal. Indeed, if a ∈ A such that
D(A) ∩ a⊤⊤ 6= ∅, then there is x ∈ D(A) such that x ∈ a⊤⊤, i.e., x⊤ = {1} and
a⊤ ⊆ x⊤. Therefore, a⊤ = {1} and a ∈ D(A). Note that D(A) is the smallest
α-ideal of A. If I ∈ Idα(A) and a ∈ D(A), then a⊤ = {1} and a⊤⊤ = A. Thus,
I ∩ a⊤⊤ 6= ∅ and since I is an α-ideal, a ∈ I. So, D(A) ⊆ I, for all I ∈ Idα(A).

Remark 2.4. Not every ideal is an α-ideal. We consider the following distributive
nearlattice A given by

1

a

b c

and the ideal I = {c}. Then, since b⊤⊤ = A, we have I ∩ b⊤⊤ 6= ∅ but b /∈ I.

Let A be a distributive nearlattice and a ∈ A. We define the set (a]α = {x ∈
A : x⊤ ⊆ a⊤}. Notice that (a]α = (b]α if and only if a⊤ = b⊤. We have the
following result, which characterizes the α-ideals.

Theorem 2.5. Let A be a normal distributive nearlattice and I ∈ Id(A). The

following conditions are equivalent:

(1) I is an α-ideal.

(2) If a ∈ I, then (a]α ⊆ I.

(3) If a⊤ = b⊤ and a ∈ I, then b ∈ I.

(4) I =
⋃

{(a]α : a ∈ I}.

Proof. (1) ⇒ (2) Let a ∈ I and x ∈ (a]α. So, x⊤ ⊆ a⊤ and a⊤⊤ ⊆ x⊤⊤. As
a ∈ a⊤⊤, we have a ∈ x⊤⊤. Thus, I ∩ x⊤⊤ 6= ∅, and since I is an α-ideal, x ∈ I.
Then (a]α ⊆ I.

(2) ⇒ (3) Let a, b ∈ A be such that a⊤ = b⊤ and a ∈ I. Thus, (a]α = (b]α and
by hypothesis, (a]α ⊆ I. Then (b]α ⊆ I, and as b ∈ (b]α, it follows that b ∈ I.

(3) ⇒ (4) Since a ∈ (a]α, for all a ∈ A, we have I ⊆
⋃

{(a]α : a ∈ I}. Conversely,
if x ∈

⋃

{(a]α : a ∈ I}, then there is a ∈ I such that x ∈ (a]α. Then x⊤ ⊆ a⊤. By

Theorem 1.10, we have a⊤ = a⊤⊻x⊤ = (a ∨ x)
⊤
. By hypothesis, a∨x ∈ I. Hence,

x ∈ I and I =
⋃

{(a]α : a ∈ I}.
(4) ⇒ (1) Let b ∈ A be such that I ∩ b⊤⊤ 6= ∅. Then there is a ∈ I such that

a ∈ b⊤⊤. It is easy to see that b⊤ ⊆ a⊤. Then b ∈ (a]α and b ∈
⋃

{(a]α : a ∈ I} = I.
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So, I is an α-ideal. ✷

Proposition 2.6. Let A be a normal distributive nearlattice. Then Idα(A) is an
algebraic closure system. Moreover, for each subset X ⊆ A, the set

Idgα(X) = {a ∈ A : ∃x1, . . . , xn ∈ X
(

a⊤ ⊆ x⊤
1 ⊻ . . . ⊻ x⊤

n

)

}

is the least α-ideal of A containing the subset X .

Proof. It is straightforward from Theorem 2.5 that Idα(A) is closed under arbitrary
intersections and unions of chains. Hence, Idα(A) is an algebraic closure system.

Let X ⊆ A. By Lemma 1.8 and Theorem 1.10, it is easy to show that
Idgα(X) is an ideal of A. Let a ∈ A be such that Idgα(X) ∩ a⊤⊤ 6= ∅. So,
there is y ∈ Idgα(X) and y ∈ a⊤⊤. Then, there are x1, . . . , xn ∈ X such that
y⊤ ⊆ x⊤

1 ⊻ . . . ⊻ x⊤
n and a⊤ ⊆ y⊤. Thus, a⊤ ⊆ x⊤

1 ⊻ . . . ⊻ x⊤
n and a ∈ Idgα(X).

Therefore, Idgα(X) is an α-ideal. It is clear that X ⊆ Idgα(X). Let now J be an
α-ideal such that X ⊆ J . Let a ∈ Idgα(X). So, there are x1, . . . , xn ∈ X such that
a⊤ ⊆ x⊤

1 ⊻ . . . ⊻ x⊤
n . Then x = x1 ∨ . . .∨ xn ∈ J . Since A is normal, it follows that

x⊤
1 ⊻ . . . ⊻ x⊤

n = (x1 ∨ . . . ∨ xn)
⊤
= x⊤. Then a⊤ ⊆ x⊤ and x ∈ a⊤⊤ ∩ J . Since J

is an α-ideal, we have a ∈ J . Hence, Idgα(X) ⊆ J . ✷

Remark 2.7. Let A be a normal distributive nearlattice and I ∈ Id(A). Then

Idgα(I) = {x ∈ A : ∃i ∈ I
(

x⊤ ⊆ i⊤
)

}.

In particular, for each a ∈ A, Idgα ((a]) = (a]α = {x ∈ A : x⊤ ⊆ a⊤}.

Now, we consider the concept of α-filter introduced in [3]. In Theorem 2.12 we
will see that the α-filters are closely related to the α-ideals.

Definition 2.8. Let A be a distributive nearlattice and F ∈ Fi(A). We say that
F is an α-filter if a⊤⊤ ⊆ F , for all a ∈ F .

Denote by Fiα(A) the set of all α-filters of A.

Example 2.9. Let A be a distributive nearlattice. Then a⊤ and a⊤⊤ are α-filters,
for all a ∈ A.

Example 2.10. Let I be a non-empty ideal of a distributive nearlattice A. Then

FI = {x ∈ A : ∃i ∈ I
(

i ∈ x⊤
)

}

is an α-filter. As I is a non-empty set, it follows that 1 ∈ FI and FI is increasing.
Let x, y ∈ FI and suppose that x∧y exists. Then there exist i, j ∈ I such that i ∈ x⊤

and j ∈ y⊤. Since I is an ideal, k = i∨j ∈ I. By Lemma 1.8, k ∈ x⊤∩y⊤ = (x ∧ y)
⊤

and x ∧ y ∈ FI . So, FI is a filter. Let a ∈ FI . If x ∈ a⊤⊤, then a⊤ ⊆ x⊤. As
a ∈ FI , there is i ∈ I such that i ∈ a⊤ ⊆ x⊤. Thus, i ∈ x⊤ and x ∈ FI . Therefore,
a⊤⊤ ⊆ FI and FI is an α-filter. Moreover, if I is proper, then I ∩ FI = ∅.
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Proposition 2.11. Let A be a distributive nearlattice. Then Fiα(A) is an alge-

braic closure system.

Theorem 1.6 allows us to separate ideals and filters through prime ideals. We
have the following separation theorem between ideals and α-filters via α-ideals.

Theorem 2.12. Let A be a distributive nearlattice. Let I ∈ Id(A) and F ∈
Fiα(A) be such that I ∩F = ∅. Then there exists P ∈ Xα(A) such that I ⊆ P and

P ∩ F = ∅.

Proof. Let us consider the set

F = {H ∈ Id(A) : I ⊆ H and H ∩ F = ∅}.

Since I ∈ F , we have F 6= ∅. The union of a chain of elements of F is also in F .
Then, by Zorn’s Lemma, there exists an ideal P maximal in F . It is easy to see
that P is prime. We prove that P is an α-ideal. Let a ∈ A be such that P ∩a⊤⊤ 6= ∅
and suppose that a /∈ P . We consider the ideal Idg(P ∪ {a}). Since P is maximal
in F , then Idg(P ∪ {a}) ∩ F 6= ∅, i.e., there is p ∈ P such that p ∨ a ∈ F . As F is
an α-filter, (p ∨ a)⊤⊤ ⊆ F . On the other hand, since P ∩ a⊤⊤ 6= ∅, there is b ∈ P
such that b ∈ a⊤⊤. So, p∨ b ∈ p⊤⊤ and p∨ b ∈ a⊤⊤. By Lemma 1.8, it follows that

p ∨ b ∈ p⊤⊤ ∩ a⊤⊤ = (p ∨ a)
⊤⊤ ⊆ F

and P ∩ F 6= ∅, which is a contradiction. Therefore, P is a prime α-ideal. ✷

Recall that D(A) = {a ∈ A : a⊤ = {1}}.

Lemma 2.13. Let A be a distributive nearlattice. Then D(A) =
⋂

{P : P ∈
Xα(A)}.

Proof. By Example 2.3, D(A) ∈ Idα(A) and D(A) ⊆
⋂

{P : P ∈ Xα(A)}. Recipro-
cally, suppose there is a ∈

⋂

{P : P ∈ Xα(A)} such that a /∈ D(A). So, since D(A)
is an α-ideal, we have D(A) ∩ a⊤⊤ = ∅. By Theorem 2.12, there exists Q ∈ Xα(A)
such that D(A) ⊆ Q and Q ∩ a⊤⊤ = ∅. As a ∈ a⊤⊤, it follows that a /∈ Q. On the
other hand, a ∈

⋂

{P : P ∈ Xα(A)} ⊆ Q, which is a contradiction. We conclude
that D(A) =

⋂

{P : P ∈ Xα(A)}. ✷

We present the main result of this section.

Theorem 2.14. Let A be a normal distributive nearlattice. Then Idα(A) is iso-

morphic to Id(R(A)).

Proof. Let φ : Idα(A) → Id(R(A)) be the mapping given by

φ(I) = {a⊤ : a ∈ I}.
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Firstly, we see that φ is well-defined. Let I ∈ Idα(A) and a⊤, b⊤ ∈ R(A) be
such that b⊤ ⊆ a⊤ and a⊤ ∈ φ(I). By Lemma 1.8, a⊤⊤ ⊆ b⊤⊤ and a ∈ I. As
a ∈ a⊤⊤, we have a ∈ b⊤⊤. Thus, I ∩ b⊤⊤ 6= ∅ and since I is an α-ideal, we have
b ∈ I. Hence, b⊤ ∈ φ(I) and φ(I) is decreasing. Let a⊤, b⊤ ∈ φ(I). Then a, b ∈ I,

and so a ∨ b ∈ I. By Theorem 1.10, it follows that a⊤ ⊻ b⊤ = (a ∨ b)
⊤ ∈ φ(I).

Thus, φ(I) ∈ Id(R(A)).
Let I, J ∈ Idα(A). It is clear that I ⊆ J implies φ(I) ⊆ φ(J). Assume now

that φ(I) ⊆ φ(J). Let a ∈ I. So, a⊤ ∈ φ(I). Thus, a⊤ ∈ φ(J). Then there is b ∈ J
such that a⊤ = b⊤. Since J is an α-ideal, it follows by Theorem 2.5 that a ∈ J .
Hence, I ⊆ J .

It only remains to show that φ is onto. Let G ∈ Id(R(A)). If IG = {a ∈ A : a⊤ ∈
G}, then by Lemma 1.8 and Theorem 1.10, it is easy to see that IG ∈ Idα(A) and
φ(IG) = G. So, φ is onto. ✷

3. α-congruences. Let A = 〈A,∨, 1〉 be a distributive nearlattice. An equiv-
alence relation θ ⊆ A × A is said to be a congruence of A if: (i) whenever
(a, b), (c, d) ∈ θ, then (a ∨ c, b ∨ d) ∈ θ, and (ii) if (a, b), (c, d) ∈ θ and a ∧ c,
b ∧ d exist, then (a ∧ c, b ∧ d) ∈ θ (see [18]). Let us denote by Con(A) the set of
all congruences of A. The structure Con(A) = 〈Con(A),∨,∩,∆,∇〉 is a complete
distributive lattice, where the least element is ∆ = {(a, a) : a ∈ A}, the greatest
element is ∇ = A × A, and for {Θi : i ∈ I} ⊆ Con(A),

∧

i∈I Θi =
⋂

i∈I Θi and
(a, b) ∈

∨

i∈I Θi if and only if there exist z0 = a, z1, . . . , zn = b ∈ A such that
(zj, zj+1) ∈

⋃

i∈I Θi, for all j = 0, . . . , n− 1.

Example 3.1. If A is a distributive nearlattice and Y ⊆ X(A), then

Θ(Y ) = {(a, b) ∈ A×A : ϕA(a)c ∩ Y = ϕA(b)c ∩ Y }

is a congruence of A, where ϕA : A → Pd(X(A)) is the mapping defined by ϕA(a) =
{P ∈ X(A) : a /∈ P}.

Now, we introduce the class of α-congruences.

Definition 3.2. Let A be a distributive nearlattice and Θ ∈ Con(A). We say
that Θ is an α-congruence if for each a, b, c, d ∈ A such that (a, b) ∈ Θ, a⊤ = c⊤

and b⊤ = d⊤ implies (c, d) ∈ Θ.

Denote by Conα(A) the set of all α-congruences of A.

Example 3.3. Let A be a normal distributive nearlattice. The relation Θ⊤ ⊆
A×A given by

(a, b) ∈ Θ⊤ ⇐⇒ a⊤ = b⊤

is a congruence of A such that A/Θ⊤ is isomorphic to R(A) (see [3]). It is easy
to see that Θ⊤ is an α-congruence. Moreover, Θ⊤ is the smallest α-congruence of
Conα(A). Indeed, let Ψ ∈ Conα(A) and (a, b) ∈ Θ⊤. Since (a, a) ∈ Ψ, a⊤ = b⊤

and Ψ is an α-congruence, we have (a, b) ∈ Ψ. Hence, Θ⊤ ⊆ Ψ.
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Remark 3.4. Not every congruence is an α-congruence. Following Remark 2.4, it
is easy to see that the congruence ∆ is not an α-congruence.

Following the notation of Examples 3.1 and 3.3, we have the next result.

Theorem 3.5. LetA be a normal distributive nearlattice. ThenΘ⊤ = Θ(Xm(A)).

Proof. Let (a, b) ∈ Θ⊤ and suppose that (a, b) /∈ Θ(Xm(A)). Then, a⊤ = b⊤ and

ϕA(a)c ∩ Xm(A) 6= ϕA(b)c ∩ Xm(A).

If ϕA(a)c ∩ Xm(A) * ϕA(b)c ∩ Xm(A), then there exists P ∈ Xm(A) such that
P ∈ ϕA(a)c and P /∈ ϕA(b)c. So, a ∈ P and b /∈ P . By Lemma 1.8, we have
P ∩ b⊤⊤ = ∅. Since a⊤ = b⊤, it follows that a ∈ P ∩ a⊤⊤ = P ∩ b⊤⊤, which is a
contradiction. Hence, (a, b) ∈ Θ(Xm(A)).

Conversely, let (a, b) ∈ Θ(Xm(A)) and suppose that (a, b) /∈ Θ⊤. Then a⊤ 6= b⊤.
Suppose that a⊤ * b⊤. Thus, there is x ∈ a⊤ such that x /∈ b⊤. Since b⊤ ∈ Fi(A),
by Theorem 1.6 there exists P ∈ X(A) such that x ∈ P and P ∩ b⊤ = ∅. By
Lemma 1.8, there exists U ∈ Xm(A) such that P ⊆ U and b ∈ U . Then,
U ∈ ϕA(b)c ∩ Xm(A) = ϕA(a)c ∩ Xm(A). Thus, a ∈ U . As x ∈ P and P ⊆ U ,
x ∈ U . Hence, 1 = x ∨ a ∈ U , which is a contradiction because U is maximal. So,
(a, b) ∈ Θ⊤. Therefore, Θ⊤ = Θ(Xm(A)). ✷

Proposition 3.6. Let A be a normal distributive nearlattice. Then Conα(A) is

a complete sublattice of Con(A).

Proof. Let {Θi : i ∈ I} ⊆ Conα(A). It is immediate that
⋂

i∈I Θi ∈ Conα(A). Let
(a, b) ∈

∨

i∈I Θi. Then, there exist z0 = a, z1, . . . , zn = b ∈ A such that (zj , zj+1) ∈
⋃

i∈I Θi, for all j = 0, . . . , n− 1. Let c, d ∈ A be such that a⊤ = c⊤ and b⊤ = d⊤.

So, (a, z1) ∈
⋃

i∈I Θi, a
⊤ = c⊤ and z⊤1 = z⊤1 . Since {Θi : i ∈ I} are α-congruences,

we have (c, z1) ∈
⋃

i∈I Θi. Analogously, (zn−1, b) ∈
⋃

i∈I Θi, z
⊤
n−1 = z⊤n−1 and

b⊤ = d⊤. Then (zn−1, d) ∈
⋃

i∈I Θi. It follows that (c, z1), (z1, z2), . . . , (zn−1, d) ∈
⋃

i∈I Θi, i.e., (c, d) ∈
∨

i∈I Θi. Therefore,
∨

i∈I Θi is an α-congruence. ✷

Let A be a distributive nearlattice and a, b ∈ A. Let Θ(a, b) be the princi-
pal congruence generated by (a, b), i.e., Θ(a, b) is the smallest congruence of A
containing (a, b). The following result will be useful.

Lemma 3.7. ([8]) Let A be a distributive nearlattice. Let a, b ∈ A be such that

b ≤ a. Then

Θ(a, b) = {(x, y) ∈ A×A : x ∨ a = y ∨ a and [x) ⊻ [b) = [y) ⊻ [b)}.

We denote by Θα(a, b) the smallest α-congruence of A containing (a, b), called
the principal α-congruence generated by (a, b). Our next goal is to characterize the
principal α-congruences.
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Proposition 3.8. Let A be a normal distributive nearlattice. Let a, b ∈ A be

such that b ≤ a. Then (x, y) ∈ Θα(a, b) if and only if

(∗) x⊤
⊻ a⊤ = y⊤ ⊻ a⊤ and

[

x⊤
)

⊔
[

b⊤
)

=
[

y⊤
)

⊔
[

b⊤
)

.

Proof. SinceA is normal, it follows straightforward that the relation Φ(a,b) defined
by (∗) is an α-congruence and (a, b) ∈ Φ(a,b). Let Ψ be an α-congruence such that

(a, b) ∈ Ψ. Let (x, y) ∈ Φ(a,b). Then x⊤
⊻ a⊤ = y⊤ ⊻ a⊤ and

[

x⊤
)

⊔
[

b⊤
)

=
[

y⊤
)

⊔
[

b⊤
)

. Thus, (m(a, b, x), y ∨ a) ∈ Ψ. Indeed, by Lemma 1.8, b ≤ a implies
b⊤ ⊆ a⊤ and by Theorem 1.10, thus

(x ∨ b)⊤ = x⊤
⊻ b⊤ = x⊤

⊻
(

b⊤ ∩ a⊤
)

=
(

x⊤
⊻ b⊤

)

∩
(

x⊤
⊻ a⊤

)

= m
(

a⊤, b⊤, x⊤
)

= m(a, b, x)⊤.

Then (x ∨ a, x ∨ b) ∈ Ψ, (x ∨ b)⊤ = m(a, b, x)⊤ and (x ∨ a)⊤ = (y ∨ a)⊤, and since
Ψ is an α-congruence, we have (m(a, b, x), y ∨ a) ∈ Ψ. Analogously, it is easy to
prove that (m(a, b, y), x∨ a), (m(a, b, x), x∨ b), (m(a, b, y), y∨ b) ∈ Ψ. So, it follows
that (x ∨ a, y ∨ b), (x ∨ b, y ∨ a) ∈ Ψ. Hence,

((x ∨ y) ∧ (x ∨ a), (x ∨ y) ∧ (y ∨ b)) = (m(a, y, x),m(b, x, y)) ∈ Ψ

and

((x ∨ y) ∧ (x ∨ b), (x ∨ y) ∧ (y ∨ a)) = (m(b, y, x),m(a, x, y)) ∈ Ψ.

Also, m(a, x, y)⊤ =
(

a⊤ ⊻ y⊤
)

∩
(

x⊤
⊻ y⊤

)

=
(

a⊤ ⊻ x⊤
)

∩ (x⊤
⊻ y⊤) = m(a, y, x)⊤

and as Ψ is an α-congruence, (m(b, y, x),m(a, y, x)) ∈ Ψ. Then, by transitivity,
(m(b, y, x),m(b, x, y)) ∈ Ψ.

On the other hand, since
[

x⊤
)

⊔
[

b⊤
)

=
[

y⊤
)

⊔
[

b⊤
)

, we have

[

x⊤
)

=
[

x⊤
)

∩
([

y⊤
)

⊔
[

b⊤
))

=
([

x⊤
)

∩
[

y⊤
))

⊔
([

x⊤
)

∩
[

b⊤
))

=
[

x⊤
⊻ y⊤

)

⊔
[

x⊤
⊻ b⊤

)

=
[(

x⊤
⊻ y⊤

)

∩
(

x⊤
⊻ b⊤

))

=
[

m
(

b⊤, y⊤, x⊤
))

=
[

m(b, y, x)⊤
)

.

Thus, x⊤ = m(b, y, x)⊤. Similarly, we can prove that y⊤ = m(b, x, y)⊤. Then, since
Ψ is an α-congruence and (m(b, y, x),m(b, x, y)) ∈ Ψ, it follows that (x, y) ∈ Ψ.
Hence, Φ(a,b) ⊆ Ψ. Therefore, Φ(a,b) = Θα(a, b). ✷

Let A be a normal distributive nearlattice. Let f : Con(R(A)) → Conα(A) be
the mapping defined by

(⋆) (a, b) ∈ f(Θ) ⇐⇒ (a⊤, b⊤) ∈ Θ.

Lemma 3.9. Let A be a normal distributive nearlattice. Let f be the mapping

given by (⋆). The following properties are satisfied:
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(1) For every {Θi : i ∈ I} ⊆ Con(R(A)),

f

(

⋂

i∈I

Θi

)

=
⋂

i∈I

f(Θi)

and

f

(

∨

i∈I

Θi

)

=
∨

i∈I

f(Θi).

(2) If b ≤ a, then f
(

Θ
(

a⊤, b⊤
))

= Θα(a, b).

Proof. (1) By Lemma 1.8 and Theorem 1.10, it follows that f is well-defined.
It is straightforward to show directly that f (

⋂

{Θi : i ∈ I}) =
⋂

{f(Θi) : i ∈ I}.
Let (a, b) ∈ f (

∨

{Θi : i ∈ I}). Thus, (a⊤, b⊤) ∈
∨

{Θi : i ∈ I}, i.e., there exist
z⊤0 = a⊤, z⊤1 , . . . , z

⊤
n = b⊤ ∈ R(A) such that (z⊤j , z⊤j+1) ∈

⋃

{Θi : i ∈ I}, for all
j = 0, . . . , n− 1. So, we have that (a, z1), (z1, z2), . . . , (zn−1, b) ∈

⋃

{f(Θi) : i ∈ I}
and (a, b) ∈

∨

{f(Θi) : i ∈ I}. Then f (
∨

{Θi : i ∈ I}) ⊆
∨

{f(Θi) : i ∈ I}. The
other inclusion is similar.

(2) Since R(A) is a distributive nearlattice, by Lemma 3.7 and Proposition 3.8,
we have

(x, y) ∈ f
(

Θ
(

a⊤, b⊤
))

⇐⇒
(

x⊤, y⊤
)

∈ Θ
(

a⊤, b⊤
)

⇐⇒ x⊤
⊻ a⊤ = y⊤ ⊻ a⊤ and

[

x⊤
)

⊔
[

b⊤
)

=
[

y⊤
)

⊔
[

b⊤
)

⇐⇒ (x, y) ∈ Θα(a, b).

Thus, f
(

Θ
(

a⊤, b⊤
))

= Θα(a, b). ✷

Theorem 3.10. Let A be a normal distributive nearlattice. Then Conα(A) is

isomorphic to Con(R(A)).

Proof. By Lemma 3.9, f : Con(R(A)) → Conα(A) defined by (⋆) is a lattice
homomorphism. It is easy to prove that f is 1-1. We prove that f is onto. We
know by Lemma 3.9 that if b ≤ a, then f

(

Θ
(

a⊤, b⊤
))

= Θα(a, b). On the other
hand, Ψ =

∨

{Θα(a, b) : (a, b) ∈ Ψ and b ≤ a}, for all Ψ ∈ Conα(A). Indeed, if
(x, y) ∈ Ψ, then (x, x ∨ y), (y, x ∨ y) ∈ Ψ and (x, y) ∈ Θα(x, x ∨ y) ∨Θα(y, x ∨ y).
The other inclusion is immediate. Then

Ψ =
∨

{Θα(a, b) : (a, b) ∈ Ψ and b ≤ a}

=
∨

{

f
(

Θ
(

a⊤, b⊤
))

: (a, b) ∈ Ψ and b ≤ a
}

= f
(

∨

{

Θ
(

a⊤, b⊤
)

: (a, b) ∈ Ψ and b ≤ a
}

)

and f is onto. Therefore, f is an isomorphism. ✷
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