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Abstract In this paper, we present a topological duality for a category of partially ordered
sets that satisfy a distributivity condition studied by David and Erné. We call these posets
mo-distributive. Our duality extends a duality given by David and Erné because our category
of spaces has the same objects as theirs but the class of morphisms that we consider strictly
includes their morphisms. As a consequence of our duality, the duality of David and Erné
easily follows. Using the dual spaces of the mo-distributive posets we prove the existence
of a particular �1-completion for mo-distributive posets that might be different from the
canonical extension. This allows us to show that the canonical extension of a distributive
meet-semilattice is a completely distributive algebraic lattice.

Keywords Posets · Distributivity · Topological duality · Completion

1 Introduction

The topological dualities for classes of algebras associated with logics arose mainly with
M.H. Stone’s work [21] in the mid-1930s when he developed a duality between Boolean
algebras and the class of compact, Hausdorff, and zero-dimensional topological spaces,
later known as Stone spaces. In the subsequent paper [22], Stone generalizes the previous
duality for Boolean algebras to show that the category of bounded distributive lattices and

� Luciano J. González
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lattice homomorphisms is dually equivalent to the category of spectral spaces and spectral
maps. A spectral space is a sober topological space in which the family of all compact open
subsets forms a base closed under finite intersections, and a spectral map between spectral
spaces is a map such that its inverse image map preserves compact open subsets. Both
topological categories, Stone spaces, and spectral spaces are subcategories of the category
of all topological spaces and continuous maps. Unlike Stone spaces, spectral spaces need
not be Hausdorff, and not even T1-spaces (in fact, a spectral space is a Stone space if and
only if it is T1). This is a disadvantage to handle these spaces, but the way in which they
are obtained from distributive lattices is considered by some authors the most natural way
to get a duality for distributive lattices.

In [18] Grätzer introduced the notion of distributive join-semilattice that generalizes
the concept of distributive lattice. And in [5] David and Erné considered a notion of dis-
tributivity for partially ordered sets (posets), already introduced in [7] and that they call
ideal-distributivity, that generalizes the concept of distributive join-semilattice. A poset is
ideal-distributive if the lattice of its ideals in the sense introduced by Frink in [10] is a dis-
tributive lattice. Then David and Erné developed a topological (spectral-like) representation
in [5] for the ideal-distributive posets and extended it to a full duality for the category of
ideal-distributive posets together with the maps between them with the property that the
inverse image of a prime Frink ideal (i.e., a Frink ideal which is a prime element in the
lattice of Frink ideals) is a prime Frink ideal. We can dually consider the notion of Frink
filter, the associated concept of filter-distributive poset and obtain a topological representa-
tion for these posets. We decided to take this dual perspective in this paper where we extend
the topological duality of David and Erné, but stated here for filter-distributive posets, to
a full duality for the category with objects the filter-distributive posets and morphisms the
filter-continuous maps (those for which the inverse image of a Frink filter is a Frink fil-
ter). These morphisms seem to be the most natural ones to consider for filter-distributive
posets. The duals of these maps are not continuous functions meeting some other proper-
ties between the dual spaces, but relations between them. Only when the maps satisfy the
additional condition of being ∨-stable (in the terminology of [5]) the dual relation can be
turned into a continuous function. In this way, the duality of David and Erné in [5], but for
filter-distributive posets, follows. We will use the topological representation to find a well-
behaved completion of a filter-distributive poset different from the canonical extension (in
the sense of [6]).

The paper is organized as follows. In Section 2 we introduce the basic notions and nota-
tions of order theory and topology needed throughout the paper. In Section 3 we study some
algebraic notions on posets. Namely, we consider concepts of filter and ideal, a distributivity
condition and a notion of morphism. These concepts on posets were introduced in the liter-
ature as generalizations of the analogous concepts in the setting of lattices. We also present
in this section some new results about these algebraic notions. The distributivity condition
on posets of [5] plays an important role to obtain a spectral style topological duality for this
class of posets. We will call the posets satisfying this condition meet-order distributive. In
Section 4 we introduce the definition of DP-spaces, we prove their main properties, and we
develop a full topological duality for the class of meet-order distributive posets. The aim of
Section 5 is to show how we can obtain the topological duality for meet-order distributive
posets developed by David and Erné in [5] through the topological duality developed in the
previous section. In Section 6 we consider a particular type of �1-completion, in the sense
of Gehrke et al. [13], for posets. We call this type of �1-completion the Frink completion.
We use the duality obtained in Section 4 to provide a topological proof of the existence of
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Frink completions of meet-order distributive posets and we show that this �1-completion
is a completely distributive algebraic lattice. Then we show, as an immediate corollary, that
the canonical extension [6] of a distributive meet-semilattice is a completely distributive
algebraic lattice.

2 Preliminaries

In this section, we introduce the basic notions and notational conventions needed for what
follows. Let X be a set. We denote by P(X) the power set of X and for every A ⊆ X,
Ac := X \ A.

Let 〈P, ≤〉 be a poset. We often denote 〈P, ≤〉 simply by P . Let A ⊆ P . We say that
A is an up-set of P if for all a, b ∈ P such that a ≤ b and a ∈ A, it holds that b ∈ A.
Dually we have the notion of down-set. Let a ∈ P . The principal up-set of P generated
by a is ↑a := {x ∈ P : a ≤ x} and the principal down-set of P generated by a is
↓a := {x ∈ P : x ≤ a}. A lower bound x of A ⊆ P is the meet (greatest lower bound or
infimum) of A if for every lower bound b of A, we have b ≤ x. If the meet of A exists, then
we denote it by

∧
A and when we write x = ∧

A we mean that the meet of A exists and it
is equal to x. Similarly, an upper bound y of A is the join (least upper bound or supremum)
of A if for every upper bound b of A, we have y ≤ b. If the join of A exists, then we denote
it by

∨
A and when we write y = ∨

A we mean that the join of A exists and it is equal to
y. If A is finite and non-empty, say A = {a1, . . . , an}, we write a1 ∧ · · · ∧ an for

∧
A and

a1 ∨ · · · ∨ an for
∨

A. A non-empty subset U of P is up-directed when for every a, b ∈ U ,
there exists c ∈ U such that a ≤ c and b ≤ c. Dually, a non-empty subset D of P is
down-directed when for every a, b ∈ D, there exists c ∈ D such that c ≤ a and c ≤ b.

Let P be a poset. We consider the following maps (.)� : P(P ) → P(P ) and
(.)u : P(P ) → P(P ) defined, respectively, as follows: for every A ⊆ P

A� := {x ∈ P : (∀a ∈ A)(x ≤ a)} and Au := {x ∈ P : (∀a ∈ A)(a ≤ x)}.

The maps (.)� and (.)u satisfy the following conditions:

(1) ((.)u, (.)�) is a Galois connection on P(P );
(2) for every a ∈ P , {a}�u = ↑a and {a}u� = ↓a.

Let P and Q be posets and let h : P → Q be a map. We say that h is order-preserving
if for all a, b ∈ P , a ≤ b implies h(a) ≤ h(b); and h is called an order-embedding if
for all a, b ∈ P , a ≤ b if and only if h(a) ≤ h(b). If for all a, b ∈ P , a ≤ b implies
h(b) ≤ h(a), then we say that h is order-reversing. A map h : P → Q between posets is
called an order-isomorphism if h is an order-embedding which is onto.

Let 〈X, τ 〉 be a topological space. The collection of all closed subsets of X is denoted
by C(X) and for A ⊆ X, cl(A) denotes the topological closure of A. For x ∈ X, we
write cl(x) instead of cl({x}). We denote by KO(X) the collection of all compact open
subsets of X. The specialization quasi-order of X is the binary relation  on X defined
by saying, for every x, y ∈ X, that x  y if and only if for every U ∈ τ , if x ∈ U

then y ∈ U . It is straightforward to check directly that the relation  on X is reflexive
and transitive. Moreover, it should be noted that x  y if and only if x ∈ cl(y). Thus,
cl(x) = ↓x = {y ∈ X : y  x}. Hence, X is a T0-space if and only if  is a partial
order on X. A non-empty closed subset F of X is said to be irreducible when for every
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F1, F2 ∈ C(X), if F ⊆ F1 ∪ F2, then F ⊆ F1 or F ⊆ F2. A topological space 〈X, τ 〉 is
said to be sober when it is a T0-space and for every irreducible closed subset F of X there
exists an element x of X such that F = cl(x).

3 Algebraic Notions on Posets

In this section, we will study analogues for posets of some usual algebraic concepts of
lattice theory like filter, ideal, homomorphism and the distributivity condition. These lattice-
theoretical concepts are generalized to the setting of posets in several different ways in the
literature, for instance in [5, 10, 17, 19]. Here we only consider those notions of filter, ideal,
morphism and distributivity on posets that will be useful for our purposes.

3.1 Filters and Ideals on Posets

The notions of filter and ideal on posets that we consider here are due to Frink [10]. For
other possible notions of filter and ideal on posets see for instance [17, 20].

Definition 3.1 Let P be a poset and F, I ⊆ P .

(1) F is said to be a Frink filter of P if for every finite A ⊆ F , A�u ⊆ F .
(2) I is said to be a Frink ideal of P if for every finite A ⊆ I , Au� ⊆ I .

We denote the collection of all Frink filters of P by FiF(P ) and the collection of all Frink
ideals of P by IdF(P ).

Notice that the empty set may be a Frink filter or a Frink ideal of a poset P . In fact, we
have that for a poset P , the empty set is a Frink filter (Frink ideal) of P if and only if P has
no top (bottom) element. This is a consequence of the fact that ∅�u = P u (∅u� = P �). A
Frink filter F (Frink ideal I ) of a poset P is called proper if F �= P (I �= P ).

Proposition 3.2 ([10]) For every poset P , the classes FiF(P ) and IdF(P ) are closure
systems.

Let P be a poset. The closure operators associated with FiF(P ) and IdF(P ) are denoted
by CF(.) and CI(.), respectively. For every A ⊆ P , CF(A) is called the Frink filter of P

generated by A and CI(A) the Frink ideal of P generated by A. It is not hard to check that
for every A ⊆ P , CF(A) = ⋃{A�u

0 : A0 ⊆ A and is finite} and CI(A) = ⋃{Au�
0 : A0 ⊆

A and is finite}.
By Proposition 3.2 we have, for every poset P , that FiF(P ) and IdF(P ) are complete

lattices with respect to the inclusion order. The meet and join of a subfamily F = {Fi : i ∈
I } ⊆ FiF(P ) are given by

∧
F =

⋂

i∈I

Fi and
∨

F = CF

(
⋃

i∈I

Fi

)

,

respectively. Similarly for the meet and join of a subfamily of IdF(P ).
A proper Frink filter F of a poset P is said to be irreducible if it is a meet-irreducible

element of the lattice FiF(P ) and F is called prime if it is a meet-prime element of FiF(P ).
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We denote respectively by FiirrF (P ) and FiprF (P ) the collections of irreducible Frink filters
and prime Frink filters of P . Similarly, we have the notions of irreducible and prime Frink
ideals. The following propositions are useful characterizations of the concepts of prime and
irreducible Frink filter. The following proposition is known, and it is not hard to prove, so
we leave the details to the reader.

Proposition 3.3 Let P be a poset and F ∈ FiF(P ) be proper. Then, F ∈ FiprF (P ) if and only
if P \ F is an up-directed subset of P .

In the following proposition, we present a new characterization of the notion of
irreducible Frink filter, which will be useful in the next theorem.

Proposition 3.4 Let P be a poset and let F ∈ FiF(P ) be proper. Then, F is irreducible if
and only if for every a, b /∈ F there exist c /∈ F and a finite C ⊆ F such that c ∈ (C∪{a})�u
and c ∈ (C ∪ {b})�u.

Proof Let F be a proper Frink filter of P . Suppose that F is irreducible and let a, b /∈ F .
We consider the following Frink filters of P : Fa := CF (F ∪ {a}) and Fb := CF (F ∪ {b}).
It is clear that F �= Fa and F �= Fb and since F is irreducible, it follows that F � Fa ∩ Fb.
So, let c ∈ Fa ∩ Fb be such that c /∈ F . As c ∈ Fa , it follows that there exists a finite
A ⊆ F ∪ {a} such that c ∈ A�u and similarly since c ∈ Fb, there exists a finite B ⊆ F ∪ {b}
such that c ∈ B�u. Taking C = (A ∩ F) ∪ (B ∩ F) we obtain that C is a finite subset of F ,
c ∈ (C∪{a})�u and c ∈ (C∪{b})�u. Conversely, assume that the condition on the right hand
side of the “if and only if” of the proposition is satisfied. Let F1 and F2 be Frink filters such
that F = F1 ∩ F2. Suppose F �= F1 and F �= F2. So, there are a ∈ F1 \ F and b ∈ F2 \ F .
Then, there exist c /∈ F and a finite C ⊆ F such that c ∈ (C ∪ {a})�u and c ∈ (C ∪ {b})�u.
Notice that (C ∪ {a})�u ⊆ F1 and (C ∪ {b})�u ⊆ F2. Then, c ∈ F1 ∩ F2 = F , which is a
contradiction. Thus, F1 = F or F2 = F and therefore F is irreducible.

The reader can obtain the dual statements of the two previous propositions for prime and
irreducible Frink ideals.

Theorem 3.5 Let P be a poset. Let F ∈ FiF(P ) and I be an up-directed down-set of P . If
F ∩ I = ∅, then there exists U ∈ FiirrF (P ) such that F ⊆ U and U ∩ I = ∅.

Proof Consider the following set G = {G ∈ FiF(P ) : F ⊆ G andG∩I = ∅} ordered by the
set-theoretic inclusion. Notice that G �= ∅ because F ∈ G. And it is straightforward to show
that the union of any chain of elements of G is in G. Then, by Zorn’s Lemma, there exists
a maximal element U of G. Now we prove that U is irreducible using Proposition 3.4. Let
a, b /∈ U . So, it is clear that U � Fa := CF (U ∪ {a}) and U � Fb := CF (U ∪ {b}). By the
maximality of U , we have Fa, Fb /∈ G. So, Fa ∩ I �= ∅ and Fb ∩ I �= ∅. Let x ∈ Fa ∩ I and
y ∈ Fb ∩ I . Then, there are finite A,B ⊆ U such that x ∈ (A∪ {a})�u and y ∈ (B ∪ {b})�u.
Let C := A ∪ B. We thus obtain that C is a finite subset of U , x ∈ (C ∪ {a})�u and
y ∈ (C ∪ {b})�u. Since x, y ∈ I and I is up-directed, it follows that there exists c ∈ I such
that x ≤ c and y ≤ c. Hence c /∈ U , c ∈ (C ∪ {a})�u and c ∈ (C ∪ {b})�u. Therefore, by
Proposition 3.4, U is an irreducible Frink filter of P .
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3.2 A Distributivity Condition on Posets

We consider here a notion of distributivity for posets discussed by David and Erné in [5]; it
is a generalization of the notion of distributivity for semilattices of Grätzer [18] and so, it is
also a generalization of the usual distributivity condition for lattices.

Definition 3.6 ([5]) Let P be a poset.

(1) We will say that P is meet-order distributive (mo-distributive for short) when for every
b1, . . . , bn, a ∈ P the following condition is satisfied:

a ∈ {b1, . . . , bn}�u =⇒ (∃ a1, . . . , ak ∈ ↑b1 ∪ · · · ∪ ↑bn)(a = a1 ∧ · · · ∧ ak).

(2) We will say that P is join-order distributive (jo-distributive for short) when for every
b1, . . . , bn, a ∈ P the following condition is satisfied:

a ∈ {b1, . . . , bn}u� =⇒ (∃ a1, . . . , ak ∈ ↓b1 ∪ · · · ∪ ↓bn)(a = a1 ∨ · · · ∨ ak).

In [5] David and Erné prove that a poset is jo-distributive if and only if the lattice of its
Frink ideals is distributive. Here, for the sake of completeness, we present a proof of the
dual statement.

Theorem 3.7 Let P be a poset. Then, P is mo-distributive if and only if the lattice FiF(P )

is distributive.

Proof First we assume that FiF(P ) is a distributive lattice and we prove that P is mo-
distributive. For this, let a, b1, . . . , bn ∈ P be such that a ∈ {b1, . . . , bn}�u. So, we have
↑a ∩ {b1, . . . , bn}�u = ↑a ∩ (↑b1 ∨ · · · ∨ ↑bn) = (↑a ∩ ↑b1) ∨ · · · ∨ (↑a ∩ ↑bn). Given
that a ∈ ↑a∩{b1, . . . , bn}�u, it follows that a ∈ (↑a ∩ ↑b1)∨· · ·∨ (↑a ∩ ↑bn). Then, there
exist a1, . . . , ak ∈ (↑a ∩ ↑b1)∪· · ·∪(↑a ∩ ↑bn) such that a ∈ {a1, . . . , ak}�u. Moreover, as
a1, . . . , ak ∈ ↑a, a ∈ {a1, . . . , ak}�. We thus obtain a ∈ {a1, . . . , ak}�u ∩ {a1, . . . , ak}� and
this implies that a = a1 ∧· · ·∧ak and moreover it is clear that a1, . . . , ak ∈ ↑b1 ∪· · ·∪↑bn.
Therefore, P is mo-distributive.

Now we suppose that P is mo-distributive. Let F1, F2, F3 ∈ FiF(P ). We need only to
prove that F1 ∩ (F2 ∨ F3) ⊆ (F1 ∩ F2) ∨ (F1 ∩ F3). Let a ∈ F1 ∩ (F2 ∨ F3). So, a ∈ F1
and there exist a1, . . . , an ∈ F2 ∪ F3 such that a ∈ {a1, . . . , an}�u. Then, because P is
mo-distributive, there exist a′

1, . . . , a
′
k ∈ ↑a1 ∪ · · · ∪ ↑an such that a = a′

1 ∧ · · · ∧ a′
k .

Clearly, a ∈ {a′
1, . . . , a

′
k}�u. Given that a ∈ F1 and a ≤ a′

i for all i = 1, . . . , k, we
have a′

1, . . . , a
′
k ∈ F1. It also holds a′

1, . . . , a
′
k ∈ ↑a1 ∪ · · · ∪ ↑an ⊆ F2 ∪ F3. Thus,

a′
1, . . . , a

′
k ∈ F1 ∩ (F2 ∪ F3) = (F1 ∩ F2) ∪ (F1 ∩ F3). Hence, since a ∈ {a′

1, . . . , a
′
k}�u,

we have a ∈ (F1 ∩ F2) ∨ (F1 ∩ F3). Therefore, FiF(P ) is a distributive lattice.

Recall that for a lattice L to be distributive is equivalent to each one of the following
conditions: 1) for all a, b, c ∈ L, a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) and 2) for all a, b, c ∈ L,
a∨(b∧c) = (a∨b)∧(a∨c). This does not extend to posets, that is, it is not true that a poset
P is mo-distributive if and only if it is jo-distributive. The following example shows it.

Example 3.8 In Fig. 1 we display a poset P and its lattices of Frink filters and Frink ideals,
respectively. The lattice FiF(P ) is distributive because it is isomorphic to the product of two
distributive lattices: FiF(P ) ∼= ((2 × 2) ⊕ N) × 2, where 2 is the distributive lattice of two
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Fig. 1 A poset P and its lattices of Frink filters and Frink ideals, respectively

elements and N is the chain of the natural numbers with the usual order. Hence, the poset P

is mo-distributive. In the lattice IdF(P ) of Fig. 1, I = ⋃
i≥1 ↓xi and J = ⋃

i≥1 ↓yi . Then
we can see that the sub-lattice {I,↓c, ↓b,↓f, J } of IdF(P ) is not distributive. Hence the
lattice IdF(P ) is not distributive. Therefore, P is not jo-distributive.

We finish this subsection with two new characterizations of the condition of mo-
distributivity.

Theorem 3.9 Let P be a poset. The following conditions are equivalent:

(1) P is mo-distributive;
(2) Every irreducible Frink filter is prime;
(3) if F ∈ FiF(P ) and I is an up-directed down-set of P such that F ∩ I = ∅, then there

exists U ∈ FiprF (P ) such that F ⊆ U and U ∩ I = ∅.

Proof (1) ⇒ (2) Assume that P is mo-distributive. Then, by Theorem 3.7, FiF(P ) is a
distributive lattice and therefore its prime elements coincide with its irreducible elements.
Thus we have (2).

(2) ⇒ (3) It is a consequence of Theorem 3.5.
(3) ⇒ (1) We prove that the lattice of Frink filters is distributive. Let F1, F2, F3 ∈

FiF(P ). We need only to show that F1 ∩ (F2 ∨ F3) ⊆ (F1 ∩ F2) ∨ (F1 ∩ F3) because the
other inclusion always holds. We suppose that F1 ∩ (F2 ∨ F3) � (F1 ∩ F2) ∨ (F1 ∩ F3).
So, let a ∈ F1 ∩ (F2 ∨ F3) \ (F1 ∩ F2) ∨ (F1 ∩ F3). Since a /∈ (F1 ∩ F2) ∨ (F1 ∩ F3),
it follows that there exists U ∈ FiprF (P ) such that a /∈ U and (F1 ∩ F2) ∨ (F1 ∩ F3) ⊆ U .
Then, F1 ∩ F2 ⊆ U and F1 ∩ F3 ⊆ U . As U is prime, we have

(F1 ⊆ U or F2 ⊆ U) and (F1 ⊆ U or F3 ⊆ U).

Since a ∈ F1 and a /∈ U , we have F2 ⊆ U and F3 ⊆ U . Then, F2 ∨ F3 ⊆ U . We thus get
a ∈ U , which is a contradiction. Hence, F1 ∩ (F2 ∨F3) ⊆ (F1 ∩F2)∨ (F1 ∩F3). Therefore,
by Theorem 3.7, P is mo-distributive.
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3.3 Morphisms Between Posets

In this part of the paper, we introduce the definitions of certain morphisms between posets
that intend to be a generalization of the standard notion of homomorphism for lattices. They
are respectively the filter-continuous and the ideal-continuous maps considered in [5]. We
also discuss the notion of ∨-stable and filter-continuous map between posets dual to the one
considered by David and Erné in [5] in order to define the category for which they present
their topological duality.

Definition 3.10 Let P and Q be two posets. We say that a map h : P → Q

(1) is an inf-homomorphism if for every finite A ⊆ P , we have

a ∈ A�u implies h(a) ∈ h[A]�u;
(2) is a sup-homomorphism if for every finite A ⊆ P , we have

a ∈ Au� implies h(a) ∈ h[A]u�;
(3) is an inf-sup-homomorphism if h is inf-homomorphism and sup-homomorphism.

The map h is called an inf-embedding (sup-embedding) if h is an inf-homomorphism (a sup-
homomorphism) and an order-embedding. Moreover, h is said to be an inf-sup-embedding
if h is an inf-embedding and a sup-embedding.

Remark 3.11 Notice that if h : P → Q is an inf-homomorphism or sup-homomorphism,
then h is order-preserving. Moreover, if h is an inf-homomorphism (sup-homomorphism),
then h preserves the top (bottom) element, if it exists.

The next proposition shows that the homomorphisms just defined are indeed the filter-
continuous and the ideal-continuous maps of [5].

Proposition 3.12 Let P and Q be posets and let h : P → Q be a map. The following
statements are true.

(1) h is an inf-homomorphism if and only if h−1[G] ∈ FiF(P ) for all G ∈ FiF(Q).
(2) h is a sup-homomorphism if and only if h−1[J ] ∈ IdF(P ) for all J ∈ IdF(Q).

Proof We only prove (1), as (2) can be proved dually. Assume that h is an inf-homo-
morphism and let G ∈ FiF(Q). Let A ⊆ h−1[G] be finite and a ∈ A�u. Since h is an
inf-homomorphism, h(a) ∈ h[A]�u. As h[A] is a finite subset of G and G ∈ FiF(Q),
it follows that h[A]�u ⊆ G. Then, h(a) ∈ G and hence a ∈ h−1[G]. Therefore,
h−1[G] ∈ FiF(P ). Reciprocally, suppose that h−1[G] ∈ FiF(P ) for all G ∈ FiF(Q). Let
A ⊆ P be finite and let a ∈ A�u. By hypothesis, h−1

[
h[A]�u] ∈ FiF(P ). Moreover,

notice that A ⊆ h−1 [h[A]] ⊆ h−1
[
h[A]�u], consequently A�u ⊆ h−1

[
h[A]�u]. Thus,

a ∈ h−1
[
h[A]�u] and hence, h(a) ∈ h[A]�u. Therefore, h is an inf-homomorphism.

Proposition 3.13 Let P and Q be posets and let h : P → Q be a map. The following
statements are equivalent:

(1) h is an inf-embedding;
(2) for every finite A ⊆ P and a ∈ P , a ∈ A�u if and only if h(a) ∈ h[A]�u.



Order (2018) 35:321–347 329

Proof (1) ⇒ (2) We need only to prove that h(a) ∈ h[A]�u implies a ∈ A�u. So, let A ⊆ P

be finite and let a ∈ P be such that h(a) ∈ h[A]�u. Let b ∈ A�. Thus, b ≤ a′ for all a′ ∈ A.
Since h is order-preserving, we have h(b) ≤ h(a′) for all a′ ∈ A. So, h(b) ∈ h[A]� and
then h(b) ≤ h(a). Hence, since h is an order-embedding, it follows that b ≤ a. Therefore
a ∈ A�u.

(2) ⇒ (1) From (2) it is clear that h is an inf-homomorphism and so, it is also order-
preserving. Let a, b ∈ P . Suppose that h(a) ≤ h(b). So, h(b) ∈ {h(a)}�u. Then b ∈ {a}�u,
which implies that a ≤ b. Hence, h is an order-embedding.

By a dual argument we have:

Proposition 3.14 Let P and Q be posets and let h : P → Q be a map. Then, the following
statements are equivalent:

(1) h is a sup-embedding;
(2) for every finite A ⊆ P and a ∈ P , a ∈ Au� if and only if h(a) ∈ h[A]u�.

An inf-homomorphism from a poset P to a poset Q preserves all existing finite meets
and the converse is true when the poset P is mo-distributive. We proceed to prove these
facts and their duals.

Proposition 3.15 Let P be a mo-distributive (jo-distributive) poset and let Q be an
arbitrary poset. Let h : P → Q be a map. Then, h is an inf-homomorphism (sup-
homomorphism) if and only if h preserves all existing finite meets (joins).

Proof Assume that h : P → Q is an inf-homomorphism. Let A ⊆ P be finite and suppose
that

∧
A exists in P . If A = ∅, then

∧
A is the top element of P and hence, by Remark 3.11,

h(
∧

A) = ∧
h[A] because h[A] = ∅. Now we suppose that A �= ∅, say A = {a1, . . . , an}

and so
∧

A = a1 ∧ · · · ∧ an. Since h is order-preserving, we have h(a1 ∧ · · · ∧ an) ≤ h(ai)

for all i ∈ {1, . . . , n}. Let y ∈ Q be such that y ≤ h(ai) for all i ∈ {1, . . . , n}. So, y ∈
{h(a1), . . . , h(an)}�. Since a1 ∧· · ·∧an ∈ {a1, . . . , an}�u and h is an inf-homomorphism, it
follows that h(a1 ∧ · · · ∧ an) ∈ {h(a1), . . . , h(an)}�u and then y ≤ h(a1 ∧ · · · ∧ an). Hence,
we have shown that h(a1 ∧ · · · ∧ an) is the greatest lower bound of {h(a1), . . . , h(an)},
i.e., h(a1 ∧ · · · ∧ an) = h(a1) ∧ · · · ∧ h(an). Therefore, h preserves all existing finite
meets.

For the reverse implication, assume that h preserves all existing finite meets. Let A ⊆ P

be finite and b ∈ A�u. If A = ∅, then b = ∧
A and is the top element of P . Then,

since h preserves finite meets, we have h(b) = ∧
h[A] with h[A] = ∅. So h(b) is the top

element of Q and hence h(b) ∈ h[A]�u. Now, suppose A �= ∅ and let A = {a1, . . . , an}.
So, b ∈ {a1, . . . , an}�u. From the mo-distributive condition for P , there exist b1, . . . , bk ∈
↑a1∪· · ·∪↑an such that b = b1∧· · ·∧bk . Then, by hypothesis, we have that h(b) = h(b1)∧
· · ·∧h(bk). Since h is order-preserving, we obtain h(b1), . . . , h(bk) ∈ ↑h(a1)∪· · ·∪↑h(an).
Let y ∈ {h(a1), . . . , h(an)}�. So, y ≤ h(ai) for all i ∈ {1, . . . , n} and thus y ≤ h(bj ) for
all j ∈ {1, . . . , k}. Then, y ≤ h(b). Hence, h(b) ∈ {h(a1), . . . , h(an)}�u and therefore h is
an inf-homomorphism.

The aim of the definition of the morphisms considered by David and Erné [5] between jo-
distributive posets in their duality (i.e., the ∧-stable and ideal-continuous maps) was that the
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extension map to the lattice of Frink ideals preserves not only arbitrary joins but also finite
meets. More precisely, for a sup-homomorphism h : P → Q between jo-distributive posets
they looked for necessary and sufficient conditions so that the extension map ĥ : IdF(P ) →
IdF(Q) defined by ĥ(F ) = CI(h[F ]) preserves finite meets. As we have been doing we will
work with the dual notions.

Definition 3.16 ([5]) Let P and Q be posets. A map h : P → Q is called ∨-stable if for
every finite A ⊆ P we have

h[A]u = CF
(
h[Au]) .

Proposition 3.17 ([5, Proposition 2.3]) Let P and Q be posets. If h : P → Q is a ∨-stable
map, then h is a sup-homomorphism.

This proposition seems to show that the notion of ∨-stable map can be considered as
a kind of morphism between posets in the sense that in the setting of join-semilattices the
condition of ∨-stability implies that the map is a join-homomorphism, but the notion of ∨-
stable map has two remarkable drawbacks. On the one hand, a join-homomorphism between
join-semilattices is not necessarily a ∨-stable map and on the other hand, the composition
of two ∨-stable maps on posets need not be a ∨-stable map (an example of this can be
found in [8]). However, as shown (dually) in [5], the maps between posets that are ∨-stable
and inf-homomorphisms can be considered as one generalization of the notion of lattice
homomorphism.

The next proposition shows clearly what the condition of being ∨-stable adds to that of
being an inf-homomorphism.

Proposition 3.18 ([5, Proposition 3.2]) Let P and Q be posets and let h : P → Q be a
map. Then, the following conditions are equivalent:

(1) h is a ∨-stable map and an inf-homomorphism;
(2) for every G ∈ FiprF (Q), we have h−1[G] ∈ FiprF (P ).

4 A Spectral-style Duality

Let us consider the category whose objects are the mo-distributive posets and whose mor-
phisms between mo-distributive posets are the inf-homomorphisms. We denote this category
by MODP. It should be clear that the composition of morphisms in this category is the usual
set-theoretic composition of functions and for every object, the identity morphism is the
identity function. In this section, we develop a topological duality for the category MODP

using certain sober spaces that we call DP-spaces. These spaces were introduced by David
and Erné in [5] to develop their topological duality for the category of jo-distributive posets
and ∧-stable sup-homomorphisms. In Section 4.1 we give the definition of DP-space and we
show how to construct the DP-space X(P ) from a mo-distributive poset P . We thus obtain
a representation theorem for mo-distributive posets. We further show that the open subsets
and compact open subsets of the space X(P ) correspond to the Frink filters and finitely
generated Frink filters of P , respectively. Then in Section 4.2 we extend the representation
theorem to a full duality between the categories of mo-distributive posets and DP-spaces.
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4.1 Topological Representation

We start introducing the definition of the topological spaces that will be dual to the mo-
distributive posets, and we study them by showing their main properties. As we said, David
and Erné [5] introduced this sort of topological spaces.

Definition 4.1 A triple X = 〈X, τ,B〉 is a DP-space if:

(DP1) 〈X, τ 〉 is a sober topological space;
(DP2) B is a base for 〈X, τ 〉 of compact open subsets that is meet-dense in KO(X), that is,

it satisfies the following condition:

for everyC ∈ KO(X), there exists A ⊆ B such that C =
⋂

A. (1)

We often denote a DP-space 〈X, τ,B〉 by 〈X,B〉, if the confusion is unlikely. It should
be noted, from Eq. 1, that if 〈X,B〉 is a DP-space and there is U ∈ B such that U ⊆ V for
all V ∈ B, then U = ∅. This fact should be kept in mind, because it will be used later on.

Proposition 4.2 Let X be a topological space and let B be a base for X of compact open
subsets. Then, the following conditions are equivalent:

(1) for every U ∈ B and every finite subfamily A ⊆ B,

(∀V ∈ B)
(⋃

A ⊆ V =⇒ U ⊆ V
)

=⇒ U ⊆
⋃

A;
(2) for every U ∈ B and every C ∈ KO(X), if U � C then there is U0 ∈ B such that

U � U0 and C ⊆ U0;
(3) for every C ∈ KO(X), there exists A ⊆ B such that C = ⋂A.

Proof It is straightforward to show the equivalence between (1) and (2), and the equivalence
between (2) and (3) is given in [5, p. 110].

Let 〈X,B〉 be a DP-space. We define the set PX := {Uc : U ∈ B} and we consider the
poset 〈PX,⊆〉. The poset 〈PX, ⊆〉 is called the dual poset of X. For what follows we shall
need the following property of the poset 〈PX, ⊆〉.

Proposition 4.3 Let 〈X,B〉 be a DP-space and let A, A1, . . . , An ∈ PX. Then, A ∈
{A1, . . . , An}�u if and only if A1 ∩ · · · ∩ An ⊆ A.

Proof It is a consequence of condition (DP2) of Definition 4.1.

Proposition 4.4 Let 〈X,B〉 be a DP-space. Then the poset 〈PX,⊆〉 is mo-distributive.

Proof To prove that the poset PX is mo-distributive, let A,B1, . . . , Bn ∈ PX be such that
A ∈ {B1, . . . , Bn}�u. By the previous proposition, we obtain B1 ∩ · · · ∩ Bn ⊆ A. Then,
A = A∪(B1∩· · ·∩Bn) = (A∪B1)∩· · ·∩(A∪Bn) and thus Ac = (Ac∩Bc

1)∪· · ·∪(Ac∩Bc
n).

Notice that for every i ∈ {1, . . . , n}, we have that Ac ∩ Bc
i is an open of X. Then, for every

i ∈ {1, . . . , n}, there exists {Ui
j : j ∈ Ji} ⊆ B such that Ac ∩Bc

i = ⋃
j∈Ji

Ui
j . So, for every
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i ∈ {1, . . . , n} it follows that Ui
j ⊆ ⋃

j∈Ji
Ui

j ⊆ Bc
i for all j ∈ Ji . On the other hand, we

have Ac =
(⋃

j∈J1
U1

j

)
∪· · ·∪

(⋃
j∈Jn

Un
j

)
. Then, since Ac is compact, it follows that there

exist i1, . . . , im ∈ {1, . . . , n} and k1 ∈ Ji1 , . . . , km ∈ Jim such that Ac = U
i1
k1

∪ · · · ∪ U
im
km

.

Hence, A =
(
U

i1
k1

)c∩· · ·∩
(
U

im
km

)c

with
(
U

i1
k1

)c

, . . . ,
(
U

im
km

)c ∈ ↑B1∪· · ·∪↑Bn. Therefore,

PX is a mo-distributive poset.

Let P be a fixed but arbitrary mo-distributive poset. We define the dual space of P as
the topological space X(P ) := 〈

FiprF (P ), τP

〉
with τP the topology on FiprF (P ) generated by

the family {ϕ(a)c : a ∈ P } where

ϕ(a) := {F ∈ FiprF (P ) : a ∈ F } and ϕ(a)c := {F ∈ FiprF (P ) : a /∈ F }
for every a ∈ P .

Lemma 4.5 Let P be a mo-distributive poset.

(1) For every a, b ∈ P and every F ∈ ϕ(a)c ∩ ϕ(b)c, there exists c ∈ P such that
F ∈ ϕ(c)c ⊆ ϕ(a)c ∩ ϕ(b)c.

(2) FiprF (P ) = ⋃
a∈P ϕ(a)c.

Proof (1) is an immediate consequence of Proposition 3.3. (2) follows from the fact that
every prime Frink filter of P is proper.

The following corollary follows directly from the previous lemma.

Corollary 4.6 Let P be a mo-distributive poset. Then, the family BP := {ϕ(a)c : a ∈ P }
is a base for the topological space X(P ).

Proposition 4.7 For every a ∈ P , ϕ(a)c is a compact subset of X(P ).

Proof Let a ∈ P . Suppose that {ai : i ∈ I } ⊆ P is such that ϕ(a)c ⊆ ⋃
i∈I ϕ(ai)

c,
having thus that

⋂
i∈I ϕ(ai) ⊆ ϕ(a). Let us consider the Frink filter F generated by the

set {ai : i ∈ I }, i.e., F := CF ({ai : i ∈ I }). Then, by Theorem 3.9, we have that a ∈ F .
Consequently, there exist i1, . . . , in ∈ I such that a ∈ {ai1 , . . . , ain}�u. Now it is easy to
check that ϕ(ai1)∩ . . .∩ϕ(ain) ⊆ ϕ(a) and this implies that ϕ(a)c ⊆ ϕ(ai1)

c ∪ . . .∪ϕ(ain)
c.

Therefore, ϕ(a)c is compact.

We have proved that BP is a base of compact open subsets of the space X(P ). We want
to show that the dual space X(P ) of a mo-distributive poset P is, in fact, a DP-space. In
order to attain this, the next step is to prove that the space X(P ) is sober. And for this, we
need to obtain a characterization of all open subsets of the space X(P ).

Let us introduce the following notation. For A ⊆ P , we define

ϕ̂(A) := {F ∈ FiprF (P ) : A ⊆ F } and ϕ̂(A)c := {F ∈ FiprF (P ) : A � F }.
Notice that for every A ⊆ P , we have ϕ̂(A) = ϕ̂(CF(A)).
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Proposition 4.8 A set U ⊆ FiprF (P ) is an open subset of X(P ) if and only if there exists a
Frink filter F of P such that ϕ̂(F )c = U .

Proof Let U ⊆ FiprF (P ) be an open subset of X(P ). Since BP is a base, it follows that
there exists A ⊆ P such that U = ⋃

a∈A ϕ(a)c. It is not hard to see that U = ϕ̂(A)c.
Hence, U = ϕ̂(F )c where F := CF(A). Conversely, let F be a Frink filter of P . Notice that
ϕ̂(F ) = ⋂

a∈F ϕ(a). Then, ϕ̂(F )c = ⋃
a∈F ϕ(a)c and therefore ϕ̂(F )c is an open subset of

X(P ).

Proposition 4.9 A set U ⊆ FiprF (P ) is a compact open subset of X(P ) if and only if there
exists a finite A ⊆ P such that U = ϕ̂

(
A�u

)c
.

Proof Let U be a compact open subset of the space X(P ). By the previous proposition,
there is F ∈ FiF(P ) such that U = ϕ̂(F )c = ⋃

a∈F ϕ(a)c. Since U is compact, it follows
that there is a finite A ⊆ F such that U = ⋃

a∈A ϕ(a)c = ϕ̂(A)c = ϕ̂
(
A�u

)c
. Conversely,

let A ⊆ P be finite. We want to prove that ϕ̂(A�u)c is a compact open subset of the space
X(P ). Since ϕ̂

(
A�u

)c = ϕ̂(A)c = ⋃
a∈A ϕ(a)c and each ϕ(a)c is a compact open subset,

we have ϕ̂
(
A�u

)c
is a finite union of compact open subsets. Hence, ϕ̂

(
A�u

)c
is a compact

open subset of the space X(P ).

Let us denote by FifF(P ) the collection of all finitely generated Frink filters of P . The
following corollary is an immediate consequence of the two previous propositions and using
Theorem 3.9.

Corollary 4.10 The map ϕ̂(.)c : FiF(P ) → τP is an order-isomorphism. Moreover, the
restriction ϕ̂(.)c : FifF(P ) → KO∗(X(P )) is an order-isomorphism, where we consider
KO∗(X(P )) = KO(X(P )), in case P has top, and KO∗(X(P )) = KO(X(P ))\{∅}, otherwise.

It is straightforward to check directly that the specialization quasi-order  of X(P ) is the
dual of the inclusion order, i.e., for every F,G ∈ FiprF (P ), F  G if and only if G ⊆ F .
Therefore, X(P ) is a T0-space. Moreover, it follows that in the poset 〈X(P ), 〉 we have
↓F = ϕ̂(F ) for every F ∈ X(P ).

Proposition 4.11 The space X(P ) = 〈
FiprF (P ), τP

〉
is sober.

Proof We already know that X(P ) is a T0-space. Let Z be an irreducible closed subset of
X(P ). Since Zc is an open subset, it follows by Proposition 4.8 that there exists a Frink
filter F of P such that Zc = ϕ̂(F )c. So, Z = ϕ̂(F ). Now we show that F is a prime Frink
filter of P . Since Z �= ∅, we have F �= P . Let F1, F2 ∈ FiF(P ) be such that F1 ∩ F2 ⊆ F .
By Corollary 4.10, we have that ϕ̂(F1) and ϕ̂(F2) are closed subsets of X(P ) and ϕ̂(F ) ⊆
ϕ̂(F1) ∪ ϕ̂(F2). Since ϕ̂(F ) = Z is an irreducible closed set, we obtain ϕ̂(F ) ⊆ ϕ̂(F1) or
ϕ̂(F ) ⊆ ϕ̂(F2); which implies, by Corollary 4.10, F1 ⊆ F or F2 ⊆ F . Hence, F is a prime
Frink filter of P and Z = ϕ̂(F ) = ↓F . Therefore, X(P ) is sober.

Now we are ready to show that the dual space X(P ) of a mo-distributive poset P is a
DP-space.
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Proposition 4.12 Let P be a mo-distributive poset. Then, 〈X(P ),BP 〉 is a DP-space.

Proof By Proposition 4.11, we have X(P ) is sober. By Corollary 4.6 and by Proposition 4.7,
BP is a base of compact open subsets for X(P ). It only remains to prove that BP satisfies
(1) of condition (DP2). To attain this, we show that BP satisfies condition (1) in Proposition
4.2. Let A ⊆ P be finite and let b ∈ P be such that

(∀x ∈ P)

(
⋃

a∈A

ϕ(a)c ⊆ ϕ(x)c =⇒ ϕ(b)c ⊆ ϕ(x)c

)

. (2)

We need to prove ϕ(b)c ⊆ ⋃
a∈A ϕ(a)c. To this end, let us show that Eq. 2 implies b ∈ A�u.

Let x ∈ P be such that x ≤ a for all a ∈ A. So ϕ(x) ⊆ ⋂
a∈A ϕ(a). Then, by Eq. 2, we

have ϕ(x) ⊆ ϕ(b). Hence, by Theorem 3.9, we obtain that x ≤ b. Thus b ∈ A�u. Now, let
F ∈ ϕ(b)c. So b /∈ F . Since b ∈ A�u, it follows that A ∩ F = ∅ and thus F ∈ ϕ(a)c for all
a ∈ A. Hence ϕ(b)c ⊆ ⋃

a∈A ϕ(a)c. Therefore, 〈X(P ),BP 〉 is a DP-space.

Let P be a mo-distributive poset. Since X(P ) is a DP-space, we have its dual poset PX(P )

and moreover we have that PX(P ) = {ϕ(a) : a ∈ P }.

Proposition 4.13 (Representation theorem) The map ϕ : P → PX(P ) is an order-
isomorphism.

Proof It is clear that ϕ is an onto map. That it is order-preserving follows from the fact
that filters are up-sets. Reciprocally, assume ϕ(a) ⊆ ϕ(b). If a � b, then ↑a ∩ ↓b = ∅.
So, by Theorem 3.9, there exists F ∈ FiprF (P ) such that a ∈ F and b /∈ F . We thus obtain
F ∈ ϕ(a) and F /∈ ϕ(b), which is a contradiction. Hence, a ≤ b. We have proved that ϕ is
an order-embedding. Therefore, ϕ is an order-isomorphism.

Let 〈X,B〉 be a DP-space and let 〈PX,⊆〉 its dual mo-distributive poset. By Proposition
4.12, we can consider the dual DP-space X(PX) of the poset PX. We want to prove that
the DP-spaces X and X(PX) are homeomorphic. To this end, we define the map θX : X →
P(PX) by setting

θX(x) := {A ∈ PX : x ∈ A}
for every x ∈ X. As usual, we omit the subscript on θ whenever confusion is unlikely. The
next proposition shows that the range of this map is included in X(PX).

Proposition 4.14 Let 〈X,B〉 be a DP-space. For every x ∈ X, θ(x) is a prime Frink filter
of PX.

Proof Let X be a DP-space and x ∈ X. Let A ⊆ θ(x) be finite. First suppose that A = ∅.
If PX has not a top element, then A�u = ∅ and if PX has a top element, then A�u = {X}.
In both cases we have A�u ⊆ θ(x). Now suppose A is non-empty and let B ∈ A�u. Then,
by Proposition 4.3, we obtain

⋂A ⊆ B. Since x ∈ ⋂A, it follows that x ∈ B and so
B ∈ θ(x). Thus θ(x) is a Frink filter of PX and, since B is a base for X, we have that
θ(x) �= PX. We show now that the Frink filter θ(x) is prime. To prove this, we show that
θ(x)c is an up-directed subset of PX. Let A, B ∈ θ(x)c. So, x ∈ Ac ∩ Bc. Since Ac ∩ Bc is
an open subset, it follows that there is U ∈ B such that x ∈ U ⊆ Ac ∩Bc. Then, Uc ∈ θ(x)c
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and A,B ⊆ Uc. Hence, θ(x)c is an up-directed subset and therefore θ(x) is a prime Frink
filter of PX.

Theorem 4.15 Let 〈X,B〉 be a DP-space. Then, θ : X → X(PX) is a homeomorphism such
that {θ [U ] : U ∈ B} is the corresponding basis of the DP-space 〈X(PX),BPX〉.

Proof From the previous proposition we know that θ is well-defined. Notice that the basic
open subsets of the DP-space X(PX) are of the form ϕ(A)c = {F ∈ FiprF (PX) : A /∈ F }
for each A ∈ PX. So, to prove that θ is continuous, let A ∈ PX and x ∈ X. Then, x ∈
θ−1[ϕ(A)c] if and only if x ∈ Ac, and since Ac ∈ B, it follows that θ−1[ϕ(A)c] is an open
subset of X. Hence, θ is continuous. Next, we show θ is an onto map. Let F ∈ X(PX) =
FiprF (PX). It is straightforward to show directly that CF := ⋂

F is an irreducible closed
subset of X. Now, since X is a sober space, we have that there exists a unique x ∈ X such
that cl(x) = CF . Let A ∈ PX, then we have A ∈ θ(x) ⇐⇒ x ∈ A ⇐⇒ cl(x) ⊆ A ⇐⇒
CF ⊆ A ⇐⇒ A ∈ F. We thus obtain that θ(x) = F and therefore θ is onto. Now, let us
show that θ is an open map. Let U ∈ B. So, we have

F ∈ θ [U ] ⇐⇒ (∃x ∈ U)(F = θ(x)) ⇐⇒ (∃x ∈ X)(Uc /∈ θ(x) = F) ⇐⇒ F ∈ ϕ(Uc)c.

Hence, θ is an open map. It should be noted that to justify the last equivalence it is necessary
to use the fact that θ is an onto map. Finally, since X is a T0-space, it is clear that θ is an
injective map. Therefore, θ : X → X(PX) is a homeomorphism. Moreover from the proof
above showing that θ is an open map follows that {θ [U ] : U ∈ B} = BPX .

Corollary 4.16 Let P be a mo-distributive poset and let X be a DP-space. Then, X(P ) is a
DP-space, PX is a mo-distributive poset and P ∼= PX(P ) and X ∼= X(PX).

4.2 Functorial Duality Between the Categories MODP and DPS

The primary purpose of this subsection is to extend the results obtained in the previous sub-
section to a full categorical duality between the category MODP and a certain category of
DP-spaces. The first step to achieving this goal is to give an adequate definition of mor-
phism between DP-spaces. The work of Celani in [2] (see also [3]) motivates the kind of
morphism that we define between DP-spaces.

Let 〈X,BX〉 and 〈Y,BY〉 be DP-spaces and let R ⊆ X×Y be a binary relation. We define
the map hR : P(Y ) → P(X) by setting hR(Z) := {x ∈ X : R[x] ⊆ Z} for every Z ⊆ Y .

Definition 4.17 Let 〈X,BX〉 and 〈Y,BY〉 be DP-spaces. A binary relation R ⊆ X × Y is
said to be a DP-morphism if

(M1) for every B ∈ PY, hR(B) ∈ PX;
(M2) for every x ∈ X, R[x] is a closed subset of Y.

In this case, we write R ⊆ X × Y.

Notice that condition (M1) tells us that the restriction of hR to PY is a map from the
poset PY to the poset PX. Moreover, it is not hard to check that for every Z1, Z2 ⊆ Y ,
hR(Z1 ∩ Z2) = hR(Z1) ∩ hR(Z2) and hR(Y ) = X.

Proposition 4.18 Let 〈X,BX〉 and 〈Y,BY〉 be DP-spaces and let R ⊆ X × Y be a DP-
morphism. Then, the map hR : PY → PX is an inf-homomorphism.
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Proof Notice that if B1, B2 ∈ PY and B1 ∧ B2 exists in PY, then B1 ∧ B2 = B1 ∩ B2.
Then, by the previous observation, we have that hR preserves all existing finite meets.
Hence, since PY is a mo-distributive poset, by Proposition 3.15 it follows that hR is an
inf-homomorphism.

Unfortunately, the usual set-theoretic relational composition of two DP-morphisms may
not be a DP-morphism. So, we need to introduce an adequate notion of composition between
DP-morphisms. To this end, we follow the same approach as Celani and Calomino followed
in [3].

Definition 4.19 Let 〈X,BX〉, 〈Y,BY〉 and 〈Z,BZ〉 be DP-spaces and let R ⊆ X × Y and
S ⊆ Y×Z be DP-morphisms. We define the binary relation S ∗ R ⊆ X × Z as follows: for
every x ∈ X,

(S ∗ R)[x] := cl((R ◦ S)[x]). (3)

Remark 4.20 Since BZ is a base for Z and PZ = {Uc : U ∈ BZ}, it follows that for every
(x, z) ∈ X × Z, (x, z) ∈ S ∗ R ⇐⇒ (∀C ∈ PZ)((R ◦ S)[x] ⊆ C =⇒ z ∈ C).

The following facts gathered in the next proposition are not difficult to prove. We leave
the details to the reader.

Proposition 4.21 Let 〈X,BX〉, 〈Y,BY〉, 〈Z,BZ〉 and 〈W,BW〉 be DP-spaces and let R ⊆
X × Y, S ⊆ Y × Z and T ⊆ Z × W be DP-morphisms. Then,

(1) for every C ∈ PZ, hS∗R(C) = (hR ◦ hS)(C);
(2) S ∗ R is a DP-morphism;
(3) T ∗ (S ∗ R) = (T ∗ S) ∗ R;
(4) the dual specialization order of X, �X, is a DP-morphism;
(5) R ∗ �X = R and �Y ∗ R = R;
(6) h�X = idPX .

Now we can define the category of all DP-spaces and all DP-morphisms, where the com-
position between DP-morphisms is ∗ and for every DP-space X the identity DP-morphism
is �X. We denote this category by DPS.

We define � : DPS → MODP as follows:

• for every DP-space X, �(X) := 〈PX,⊆〉;
• for every morphism R ⊆ X × Y of DPS, �(R) := hR : PY → PX.

By Propositions 4.4 and 4.18, we have that � sends objects and morphisms from DPS to
objects and morphisms of MODP, respectively, and by Proposition 4.21 we obtain that �

is a contravariant functor.
Now we want to find a contravariant functor from MODP to DPS. To this end, by Propo-

sition 4.12, we need only define the image of morphisms of the category MODP. So, let P

and Q be mo-distributive posets and let h : P → Q be an inf-homomorphism. We define a
binary relation Rh ⊆ X(Q) × X(P ) as follows:

GRhF ⇐⇒ h−1[G] ⊆ F

for every pair (G, F ) ∈ X(Q) × X(P ).
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Proposition 4.22 Let P and Q be mo-distributive posets and let h : P → Q be an inf-
homomorphism. Then,

(1) for every a ∈ P , hRh
(ϕ(a)) = ϕ(h(a));

(2) Rh is a DP-morphism;
(3) RidP

= �X(P ).

Proof (1) Let a ∈ P and let G ∈ FiprF (Q). Then, by Proposition 3.12 and Theorem 3.9, we
have

G ∈ ϕ(h(a)) ⇐⇒ a ∈ h−1[G] ⇐⇒ (∀F ∈ FiprF (P ))(h−1[G] ⊆ F =⇒ a ∈ F)

⇐⇒ (∀F ∈ FiprF (P ))(GRhF =⇒ F ∈ ϕ(a)) ⇐⇒ Rh[G] ⊆ ϕ(a) ⇐⇒ G ∈ hRh
(ϕ(a)).

Hence, hRh
(ϕ(a)) = ϕ(h(a)) for all a ∈ P .

(2) By (1), we have that condition (M1) of Definition 4.17 holds. To prove condition
(M2), let G ∈ X(Q). It is clear that Rh[G] ⊆ ⋂{ϕ(a) ∈ PX(P ) : Rh[G] ⊆ ϕ(a)}. In order
to show the other inclusion let F ∈ ⋂{ϕ(a) ∈ PX(P ) : Rh[G] ⊆ ϕ(a)} and let b ∈ h−1[G].
So, by (1), we have Rh[G] ⊆ ϕ(b). Then F ∈ ϕ(b), which implies b ∈ F . We thus obtain
h−1[G] ⊆ F . Then, F ∈ Rh[G]. Hence, Rh[G] = ⋂{ϕ(a) ∈ PX(P ) : Rh[G] ⊆ ϕ(a)}.
Therefore, Rh is a DP-morphism.

(3) It follows directly from the definition of RidP
.

Proposition 4.23 Let P1, P2 and P3 be mo-distributive posets and let h1 : P1 → P2 and
h2 : P2 → P3 be inf-homomorphisms. Then, R(h2◦h1) = Rh1∗Rh2 .

Proof It is not difficult to see that for every DP-morphisms R1, R2 ⊆ X × Y, if the restric-
tions of hR1 and hR2 to PY are the same, then R1 = R2. Thus, it is enough to show that
hR(h2◦h1)

= hRh1 ∗Rh2
. Let a ∈ P1. Then, using Proposition 4.22 we have

hR(h2◦h1)
(ϕ(a)) = ϕ ((h2 ◦ h1)(a)) = ϕ (h2(h1(a)))

= hRh2
(ϕ(h1(a))) = hRh2

(hRh1
(ϕ(a))) = (hRh2

◦ hRh1
)(ϕ(a)).

We thus obtain hR(h2◦h1)
= hRh2

◦hRh1
. Now, by condition (1) of Proposition 4.21, we know

that hRh2
◦ hRh1

= h(Rh1 ∗Rh2 ). We thus obtain hR(h2◦h1)
= h(Rh1 ∗Rh2 ) and this implies that

R(h2◦h1) = Rh1 ∗ Rh2 . This completes the proof.

Now we define � : MODP → DPS as follows:

• for every mo-distributive poset P , �(P ) := 〈X(P ),BP 〉;
• for every morphism h : P → Q of the category MODP, �(h) := Rh ⊆ X(Q)×X(P ).

Therefore, by Propositions 4.12 and 4.22, we have that � sends objects and morphisms from
MODP to objects and morphisms of DPS and by Propositions 4.22 and 4.23, we obtain that
� is a contravariant functor.

Our purpose is to prove that the categories MODP and DPS are dually equivalent via
the functors � : DPS → MODP and � : MODP → DPS. So, we need to define natural
equivalences η : IdDPS ∼= � ◦ � and μ : IdMODP

∼= � ◦ �, where IdMODP and IdDPS are the
identity functors on the categories MODP and DPS, respectively.
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Let 〈X,B〉 be a DP-space. Recall that we have defined the homeomorphism θ : X →
X(PX) by θ(x) = {A ∈ PX : x ∈ A}. We define the binary relation Rθ ⊆ X × X(PX) as
follows: for every x ∈ X and every F ∈ FiprF (PX),

xRθF ⇐⇒ θ(x) ⊆ F.

Notice that for every x ∈ X, xRθθ(x) because θ(x) ∈ FiprF (PX). We need also to consider
the inverse homeomorphism θ−1 : X(PX) → X. We can define the binary relation Rθ−1 ⊆
X(PX) × X as follows: for every x ∈ X and every F ∈ FiprF (PX),

FRθ−1x ⇐⇒ θ−1(F ) �X x.

Proposition 4.24 Let 〈X,B〉 be a DP-space. Then,

(1) Rθ is a DP-morphism;
(2) Rθ−1 is a DP-morphism;
(3) Rθ−1 ∗ Rθ = �X and Rθ ∗ Rθ−1 = �X(PX).

Proof (1) To prove condition (M1), let A ∈ PX. We show that hRθ (ϕ(A)) = A. Let x ∈
hRθ (ϕ(A)). So, Rθ [x] ⊆ ϕ(A) and since θ(x) ∈ Rθ [x], we have A ∈ θ(x). That is, x ∈ A.
Conversely, let x ∈ A. So, A ∈ θ(x). Let F ∈ Rθ [x]. Thus, θ(x) ⊆ F ; this implies that A ∈
F . Then, F ∈ ϕ(A). Hence, we have proved that Rθ [x] ⊆ ϕ(A) and thus, x ∈ hRθ (ϕ(A)).
Therefore, condition (M1) holds. To prove (M2), let x ∈ X. It should be noted that

Rθ [x] =
⋂

{ϕ(A) : A ∈ PX andx ∈ A}.
Thus Rθ [x] is a closed subset of X(PX) and hence, condition (M2) holds. Therefore, Rθ is
a DP-morphism.

(2) Notice that for every A ∈ PX and every F ∈ FiprF (PX), we have that

Rθ−1 [F ] ⊆ A if and only ifA ∈ F. (4)

Let A ∈ PX. We prove that hR
θ−1 (A) = ϕ(A). Let F ∈ hR

θ−1 (A). So, Rθ−1 [F ] ⊆ A and
from Eq. 4, it follows that A ∈ F . Hence, F ∈ ϕ(A). We now assume that F ∈ ϕ(A). So, by
Eq. 4, we have that Rθ−1 [F ] ⊆ A; this implies that F ∈ hR

θ−1 (A). Hence, we have proved
that hR

θ−1 (A) = ϕ(A) ∈ PX(PX) for all A ∈ PX. Therefore, condition (M1) holds. To prove

condition (M2), let F ∈ FiprF (PX). We prove that Rθ−1 [F ] = ⋂{A ∈ PX : A ∈ F }. It is
immediate that Rθ−1 [F ] ⊆ ⋂{A ∈ PX : A ∈ F }. Let x ∈ ⋂{A ∈ PX : A ∈ F } and
let A ∈ PX be such that θ−1(F ) ∈ A. So, A ∈ θ(θ−1(F )) = F and then x ∈ A. Thus,
θ−1(F ) �X x. That is, x ∈ Rθ−1 [F ]. Then Rθ−1 [F ] is a closed subset of X and hence
condition (M2) holds. Therefore, Rθ−1 is a DP-morphism.

(3) First we show that Rθ−1 ∗ Rθ = �X. So, let x, x′ ∈ X. We assume x(Rθ−1 ∗ Rθ)x
′.

Thus, for every A ∈ PX, if (Rθ ◦ Rθ−1)[x] ⊆ A then x′ ∈ A. To prove that x �X x′, let
A ∈ PX be such that x ∈ A. Let x′′ ∈ (Rθ ◦ Rθ−1)[x]. So, there exists F ∈ X(PX) such that
xRθF and FRθ−1x′′. That is, θ(x) ⊆ F and θ−1(F ) �X x′′. As x ∈ A, we have A ∈ θ(x),
which implies that A ∈ F = θ(θ−1(F )). Then θ−1(F ) ∈ A and, since θ−1(F ) �X x′′, it
follows that x′′ ∈ A. Thus, (Rθ ◦ Rθ−1)[x] ⊆ A and then, by hypothesis, x′ ∈ A. Hence,
we have proved that for every A ∈ PX, if x ∈ A then x′ ∈ A; which implies that x �X x′.
Conversely, we suppose that x �X x′. We need to prove that x(Rθ−1 ∗Rθ)x

′. Let A ∈ PX be
such that (Rθ ◦Rθ−1)[x] ⊆ A. Notice that x(Rθ ◦Rθ−1)x, because xRθθ(x) and θ(x)Rθ−1x.
We thus obtain that x ∈ A and, since x �X x′, we have x′ ∈ A. Hence, x(Rθ−1 ∗ Rθ)x

′.
Therefore, Rθ−1 ∗ Rθ = �X.
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Now we prove that Rθ ∗ Rθ−1 = �X(PX). Let F1, F2 ∈ X(PX). Let us first assume that
F1(Rθ ∗ Rθ−1)F2. Then, we have

(∀A ∈ PX)
(
(Rθ−1 ◦ Rθ)[F1] ⊆ ϕ(A) =⇒ F2 ∈ ϕ(A)

)
.

Given that BPX = {ϕ(A)c : A ∈ PX} is a base for the DP-space X(PX), it follows that the
dual specialization order �X(PX) of X(PX) can be defined as

F1 �X(PX) F2 ⇐⇒ (∀A ∈ PX) (F1 ∈ ϕ(A) =⇒ F2 ∈ ϕ(A)) .

Let A ∈ PX be such that F1 ∈ ϕ(A). We show that (Rθ−1 ◦Rθ)[F1] ⊆ ϕ(A). Let F ∈ (Rθ−1 ◦
Rθ)[F1]. Then, there exists x ∈ X such that F1Rθ−1x and xRθF . That is, θ−1(F1) �X x and
θ(x) ⊆ F . Notice that θ(x) ⊆ F is equivalent to θ(x) �X(PX) F . Since θ−1 : X(PX) → X is
a homeomorphism, it follows that θ−1 is order-preserving with respect to the specialization
order. We thus obtain θ−1(θ(x)) �X θ−1(F ) and then x �X θ−1(F ). By the transitivity
of �X, we obtain θ−1(F1) �X θ−1(F ). Using the fact that θ is order-preserving, because
it is a homeomorphism, we have that F1 �X(PX) F and, since F1 ∈ ϕ(A), it follows that
F ∈ ϕ(A). Thus, (Rθ−1 ◦ Rθ)[F1] ⊆ ϕ(A). Hence, by hypothesis, F2 ∈ ϕ(A). Therefore,
F1 �X(PX) F2. Now, conversely, we assume that F1 �X(PX) F2. It follows that (∀A ∈
PX) (F1 ∈ ϕ(A) =⇒ F2 ∈ ϕ(A)). Let A ∈ PX be such that (Rθ−1 ◦ Rθ)[F1] ⊆ ϕ(A). It
should be noted that F1 ∈ (Rθ−1 ◦ Rθ)[F1] because F1Rθ−1θ−1(F1) and θ−1(F1)RθF1.
Then, F1 ∈ ϕ(A) and so, F2 ∈ ϕ(A). Hence, F1(Rθ ∗ Rθ−1)F2. This finishes the proof.

We are now ready to establish the main result of this section.

Theorem 4.25 The categories MODP and DPS are dually equivalent via the above
functors � : DPS → MODP and � : MODP → DPS.

Proof As outlined above, it only remains to define the natural equivalences

μ : IdMODP
∼= � ◦ � and η : IdDPS ∼= � ◦ �.

We consider the following definitions:

• for every mo-distributive poset P , μ(P ) = ϕ : P → PX(P );
• for every DP-space X, η(X) = Rθ ⊆ X × X(PX).

By Propositions 4.13 and 4.24 we have that for every mo-distributive poset P and every DP-
space X, μ(P ) = ϕ and η(X) = Rθ are isomorphisms of the categories MODP and DPS,
respectively. Lastly, we show that for every morphism h : P1 → P2 of the category MODP

and every morphism R ⊆ X1 × X2 of the category DPS the diagrams in Fig. 2 commute.

Fig. 2 Commutative diagrams of morphisms in the categories MODP and DPS
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That the diagram on the left hand side of Fig. 2 commutes is a consequence of (1) of
Proposition 4.22. For the diagram on the right hand side of Fig. 2, we must show that
RhR

∗ Rθ1 = Rθ2 ∗ R. To this end, we first show that for every x ∈ X1

(Rθ1 ◦ RhR
)[x] = (R ◦ Rθ2)[x]. (5)

Let G ∈ (Rθ1 ◦ RhR
)[x]. So, there exists F ∈ X(PX1) such that xRθ1F and FRhR

G.
Then θ1(x) ⊆ F and h−1

R [F ] ⊆ G. Since G ∈ X(PX2), it follows that there is x2 ∈ X2 such
that G = θ2(x2) and thus it is clear that x2Rθ2G. Now, we want to show that xRx2. Let
B ∈ PX2 be such that R[x] ⊆ B. Then, we have the following implications:

R[x] ⊆ B =⇒ x ∈ hR(B) =⇒ hR(B) ∈ θ1(x) =⇒ hR(B) ∈ F

=⇒ B ∈ h−1
R [F ] =⇒ B ∈ θ2(x2) =⇒ x2 ∈ B.

Hence, by (M2) of Definition 4.17, x2 ∈ R[x]. We thus obtain xRx2 and x2Rθ2G. Hence,
G ∈ (R ◦ Rθ2)[x]. Conversely, let G ∈ (R ◦ Rθ2)[x]. So, there is x2 ∈ X2 such that xRx2
and x2Rθ2G. Then, x2 ∈ R[x] and θ2(x2) ⊆ G. Given that xRθ1θ1(x), we want to show
that θ1(x)RhR

G. Let B ∈ h−1
R [θ1(x)]. So, hR(B) ∈ θ1(x) and this implies that x ∈ hR(B).

Then, R[x] ⊆ B and thus x2 ∈ B. That is, B ∈ θ2(x2) and whereupon B ∈ G. Thus,
h−1

R [θ1(x)] ⊆ G and hence θ1(x)RhR
G. Therefore, we have xRθ1θ1(x) and θ1(x)RhR

G,
i.e., G ∈ (Rθ1 ◦ RhR

)[x]. Hence, Eq. 5 holds. Then, taking the topological closure to both
sides of equality in Eq. 5 and by the definition of ∗, we obtain that RhR

∗ Rθ1 = Rθ2 ∗ R.
This completes the proof.

5 Connection with the Work of David and Erné

In this section, we will see how to obtain, from our spectral-style duality, the topological
duality due to David and Erné [5]. We do it for the category of mo-distributive posets and
maps that are ∨-stable and inf-homomorphisms.

Let us recall that for every mo-distributive poset P , the specialization order of the DP-
space X(P ) is the dual of the inclusion order. In this section, whenever we refer to an order
or a notion related to an order of a DP-space, we refer to the specialization order.

Definition 5.1 Let X and Y be DP-spaces. A DP-morphism R ⊆ X×Y is called functional
if for every x ∈ X there exists y ∈ Y such that R[x] = ↓y, where ↓y = {y′ ∈ Y : y′  y}.

Proposition 5.2 Let P and Q be mo-distributive posets and let h : P → Q be an inf-homo-
morphism. Then, h is ∨-stable if and only if the DP-morphism Rh is functional.

Proof We prove first that for each G ∈ X(Q), Rh[G] has a top element if and only if
h−1[G] ∈ X(P ). Let G ∈ X(Q). Suppose that Rh[G] has a top element F ∈ Rh[G]. So,
h−1[G] ⊆ F . If F �= h−1[G], then there exists a ∈ F such that a /∈ h−1[G]. Since h

is an inf-homomorphism, we have h−1[G] is a Frink filter of P . Then, by Theorem 3.9,
there exists F ′ ∈ X(P ) such that h−1[G] ⊆ F ′ and a /∈ F ′. We thus get F ′ ∈ Rh[G]
and F ′ � F , which is a contradiction because F is the top element of Rh[G]. Hence,
h−1[G] = F ∈ X(P ). Reciprocally, if h−1[G] ∈ X(P ) then h−1[G] is the top element of
Rh[G] in X(P ). Hence, by Lemma 3.18, it follows that h is a ∨-stable map if and only if
Rh[G] has a top element for every G ∈ X(Q).
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The following lemma shows that the composition ∗ between functional DP-morphisms
is the usual set-theoretical composition between relations.

Lemma 5.3 Let X, Y and Z be DP-spaces and let R ⊆ X× Y and S ⊆ Y× Z be functional
DP-morphisms. Then S ∗ R = R ◦ S.

Proof Let x ∈ X. So, there is y ∈ Y such that R[x] = ↓y. Then, there exists z ∈ Z

such that S[y] = ↓z. We prove that (R ◦ S)[x] = ↓z. Let z′ ∈ (R ◦ S)[x]. Thus, there
is y′ ∈ Y such that y′ ∈ R[x] and z′ ∈ S[y′]. We thus obtain y′  y and this implies
that S[y′] ⊆ S[y]. Then, z′ ∈ S[y] = ↓z. Hence, (R ◦ S)[x] ⊆ ↓z. To show the other
inclusion, let z′ ∈ ↓z = S[y]. Since xRy and ySz′, it follows that z′ ∈ (R ◦ S)[x]. Hence,
↓z ⊆ (R◦S)[x]. Then, (R◦S)[x] = ↓z and so it is a closed subset of Z. Hence (S∗R)[x] =
cl ((R ◦ S)[x]) = (R ◦ S)[x]. Thus we obtain (S ∗ R)[x] = (R ◦ S)[x] for all x ∈ X and
therefore S ∗ R = R ◦ S.

From the previous lemma, it is not hard to check the following proposition.

Proposition 5.4 Let X, Y and Z be DP-spaces. If R ⊆ X×Y and S ⊆ Y×Z are functional
DP-morphisms, then S ∗ R is functional.

It should be noted that for every DP-space X, the identity DP-morphism �X is functional.
Hence, by the previous proposition, we can consider the category of DP-spaces and func-
tional DP-morphisms. We denote this category by DPSF, which is a subcategory of DPS.
Let us also consider the category formed by all mo-distributive posets and all maps between
mo-distributive posets that are inf-homomorphism and ∨-stable. This category is denoted
by MODPsta. It is clear that MODPsta is a subcategory of MODP.

Proposition 5.5 The categoriesMODPsta and DPSF are dually equivalent via the functors
� : DPSF → MODPsta and � : MODPsta → DPSF, which are the restrictions of the
functors defined on pages 16 and 17, respectively.

Now we are going to introduce the topological category considered by David and Erné
[5] to establish their dual categorical equivalence. Let 〈X,BX〉 and 〈Y,BY〉 be DP-spaces.
A map f : X → Y is called a DP-function if for every V ∈ BY, f −1[V ] ∈ BX. Let us
denote by DPSsta the category of DP-spaces and DP-functions (this category is denoted in
[5, pp. 110] by SB).

Let X and Y be DP-spaces. For each functional DP-morphism R ⊆ X×Y we define the
map f R : X → Y by setting f R(x) := the greatest element of R[x], for every x ∈ X. And
for each DP-function f : X → Y we define the binary relation Rf ⊆ X × Y as follows:
xRf y ⇐⇒ y  f (x), for every pair (x, y) ∈ X × Y . Using the definitions, the following
two lemmas are not hard to prove.

Lemma 5.6 Let X and Y be DP-spaces and let R ⊆ X × Y be a functional DP-morphism.
Then, the map f R : X → Y is a DP-function. Moreover, if Z is a DP-space and S ⊆ Y × Z
is a functional DP-morphism, then we have f S◦R = f S ◦ f R .

Proof To prove that f R is a DP-function, let V ∈ B(Y) and let x ∈ X. Then, we have

x ∈ f R−1[V c] ⇐⇒ f R(x) ∈ V c ⇐⇒ ↓f R(x) ⊆ V c ⇐⇒ R[x] ⊆ V c ⇐⇒ x ∈ hR(V c).
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So, f R−1[V c] = hR(V c) ∈ PX and hence f R−1[V ] ∈ B(X). Therefore, f R is a DP-
function. Now, let Z be a DP-space and let S ⊆ Y × Z be a functional DP-morphism.
Let x ∈ X. Then,

f R◦S(x) = the greatest element of(R ◦ S)[x]
= the greatest element ofS[y], wherey is the greatest element ofR[x]
= f S(y), wherey is the greatest element ofR[x]
= f S(f R(x))

= (f S ◦ f R)(x).

Therefore, f R◦S = f S ◦ f R .

Lemma 5.7 Let X and Y be DP-spaces and let f : X → Y be a DP-function. Then, the
relation Rf ⊆ X × Y is a functional DP-morphism. Moreover, if Z is a DP-space and
g : Y → Z is a DP-function, then Rg◦f = Rg ◦ Rf .

Proof We need to prove conditions (M1) and (M2) of Definition 4.17. Let B ∈ PY. Since
Rf [x] = ↓f (x) for all x ∈ X, we have

hRf (B) = {x ∈ X : Rf [x] ⊆ B} = {x ∈ X : ↓f (x) ⊆ B}
= {x ∈ X : f (x) ∈ B} = f −1[B] ∈ PX.

Then, condition (M1) holds. Let now x ∈ X. Since Rf [x] = ↓f (x) = cl(f (x)), we obtain
that Rf [x] is a closed subset of Y. Then, Rf satisfies condition (M2). Hence, Rf ⊆ X×Y
is a DP-morphism. Since Rf [x] = ↓f (x) for all x ∈ X, it follows that Rf is functional.
This completes the proof of the first part of the lemma.

Let Z be a DP-space and let g : Y → Z be a DP-function. Let x ∈ X and z ∈ Z. Then,

xRg◦f z ⇐⇒ z  (g ◦ f )(x) ⇐⇒ z  g(f (x)) ⇐⇒ f (x)Rgz

⇐⇒ xRf f (x) andf (x)Rgz ⇐⇒ x(Rf ◦ Rg)z.

Hence, Rg◦f = Rf ◦ Rg .

The following lemma follows immediately from definitions of f R and Rf and so we
leave the details to the reader.

Lemma 5.8 Let X and Y be DP-spaces. Let R ⊆ X × Y be a functional DP-morphism and
let f : X → Y be a DP-function. Then, Rf R = R and f Rf = f .

Putting the last three lemmas together we obtain the following proposition, whose proof
we omit.

Proposition 5.9 The categories DPSF and DPSsta are isomorphic.

Then, by the previous proposition and Proposition 5.5, we can directly derive the dual-
ity established by David and Erné in [5, Theorem 4.2] (but stated now for mo-distributive
posets).

Theorem 5.10 The categoriesMODPsta and DPSsta are dually equivalent.
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Finally, we want to set the explicit construction of the functors that give the dual equiv-
alence between the categories MODPsta and DPSsta. These functors correspond to those
defined in [5] by David and Erné to establish their dual equivalence. To this end, the
following lemma is central.

Lemma 5.11

(1) Let X and Y be DP-spaces and let f : X → Y be a DP-function. Then, for every
B ∈ PY, hRf (B) = f −1[B].

(2) Let P and Q be mo-distributive posets and let h : P → Q be a ∨-stable inf-homomor-
phism. Then, f Rh(G) = h−1[G] for all G ∈ X(Q).

Proof (1) Let B ∈ PY and let x ∈ X. Then,

x ∈ hRf (B) ⇐⇒ Rf [x] ⊆ B ⇐⇒ ↓f (x) ⊆ B ⇐⇒ f (x) ∈ B ⇐⇒ x ∈ f −1[B].
Hence, hRf (B) = f −1[B] for all B ∈ PY.

(2) Given that h : P → Q is a ∨-stable inf-homomorphism, we have that Rh ⊆ X(Q) ×
X(P ) is a functional DP-morphism where h−1[G] is the greatest element of Rh[G] in X(P )

for every G ∈ X(Q). By definition of f Rh : X(Q) → X(P ), we have f Rh(G) = h−1[G]
for every G ∈ X(Q).

Now, by Lemma 5.11, we can make explicit the corresponding functors that establish the
dual equivalence in Theorem 5.10:

� �∗ : MODPsta → DPSsta is defined as follows:

• for every mo-distributive poset P , �∗(P ) := 〈X(P ),BP 〉 = �(P );
• for every morphism h : P → Q in MODPsta, �∗(h) := h−1 : X(Q) → X(P ).

� �∗ : DPSsta → MODPsta is defined as follows:

• for every DP-space X, �∗(X) := PX = �(X);
• for every morphism f : X → Y in DPSsta, �∗(f ) := f −1 : PY → PX.

6 A Completion for Mo-distributive Posets

The main aim of this section is to provide a proof of the existence of a particular completion
for the mo-distributive posets using the dual DP-spaces. This completion will be a �1-
completion in the sense of [13].

Let P be a poset. A completion of P is a complete lattice L together with an order-
embedding e : P ↪→ L. A �1-completion of P is a completion for which each element can
be obtained both as a join of meets of elements of e[P ] and as a meet of joins of elements
of e[P ]. A nice and important way to obtain �1-completions is by means of �1-polarities
as defined in [13] (see also [12, Remark 2.8]). Given a poset P , we consider here for our
purposes only some of these �1-polarities, the triples (F ,I, R) where F is a collection of
up-sets of P such that all principal up-sets of P belong to F , I is a collection of down-
sets of P such that all principal down-sets of P belong to I and R ⊆ F × I is the binary
relation of non-empty intersection, that is, FRI if and only if F ∩ I �= ∅, for every F ∈ F
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and I ∈ I . Let P be a poset and (F ,I, R) one of these �1-polarities. It provides a �1-
completion of P by considering the Galois connection associated with it, which is given by
the maps 
R : P(F) → P(I) and �R : P(I) → P(F) defined by

• 
R(A) := {I ∈ I : ∀F(F ∈ A ⇒ FRI)} and
• �R(B) := {F ∈ F : ∀I (I ∈ B ⇒ FRI)},
respectively. The �1-completion of P provided by (F ,I, R) is the complete lattice L =
G(F ,I, R) of Galois closed subsets of F , and the embedding e is given by a �→ {F ∈ F :
a ∈ F }, for every a ∈ P . In the terminology of [13] the completion L = G(F ,I, R) is an
(F ,I)-completion of P , which means that it has the following two important properties:

1. (F ,I)-compactness: for every F ∈ F and I ∈ I if
∧

e[F ] ≤ ∨
e[I ], then F ∩ I �= ∅;

2. (F ,I)-density: for every a ∈ L,

• a = ∨{∧ e[F ] : F ∈ F and
∧

e[F ] ≤ a}
• a = ∧{∨ e[I ] : I ∈ I anda ≤ ∨

e[I ]}.
(see [13, Definitions 5.1, 5.7 and Theorem 5.10]). For further details and background on
polarities, a notion that goes back to G. Birkhoff [1], see [11–13] and [4, Chapters 3 and 7].

Given a poset P , recall that FiF(P ) denotes the collection of all Frink filters of P and let
us denote by Id(P ) the collection of all non-empty up-directed down-sets of P . Theorem
5.10 in [13] applied to FiF(P ) and Id(P ) gives the next theorem.

Theorem 6.1 Let P be a poset. Then, there exists a unique, up to isomorphism, completion
〈L, e〉 of P which is (FiF(P ), Id(P ))-compact as well as (FiF(P ), Id(P ))-dense, that is, that
satisfies the following conditions :

(1) for every F ∈ FiF(P ) and I ∈ Id(P ) if
∧

e[F ] ≤ ∨
e[I ], then F ∩ I �= ∅;

(2) for every element a ∈ L, a = ∨{∧ e[F ] : F ∈ FiF(P ) and
∧

e[F ] ≤ a} and
a = ∧{∨ e[I ] : I ∈ Id(P ) anda ≤ ∨

e[I ]}.

The unique up to isomorphism completion of P satisfying the previous conditions is
the (FiF(P ), Id(P ))-completion of P , in the terminology of [13]. We give a name to this
completion of a poset.

Definition 6.2 Let P be a poset. The Frink completion of P is the unique up to isomorphism
completion of P such that conditions (1) and (2) in Theorem 6.1 hold. We refer to it by P Fr.

Another important completion of a poset considered in the literature is the canonical
extension as defined in [6]. The concept of canonical extension for posets is a generalization
of the canonical extensions for lattices [12] and for distributive lattices [14–16]. The canon-
ical extension of a poset P is the (F(P ), Id(P ))-completion of P , where F(P ) is here the
collection of all non-empty down-directed up-sets of P , and it is denoted by P σ (see [13]
and [20]). In the following example, we show that the Frink completion and the canonical
extension of a poset may be different, even if the poset is mo-distributive. In contrast they
coincide for meet-semilattices.

Example 6.3 We consider the poset P given on the right hand side in Fig. 3. The canonical
extension P σ and the Frink completion P Fr of P are also shown in Fig. 3. Thus we observe
that P σ and P Fr are not isomorphic. Moreover, it is clear that the poset P is mo-distributive.
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Fig. 3 A mo-distributive poset P and its canonical extension P σ and Frink completion P Fr

Proposition 6.4 Let M be a meet-semilattice. Then the canonical extension of M coincides
with the Frink completion of M . That is, Mσ ∼= MFr.

Proof It is an immediate consequence since FiF(M) coincides with the collection of all
filters (in the sense of lattices) of M because M is a meet-semilattice.

Now we will use the topological representation for mo-distributive posets presented in
Section 4 to provide a topological proof of the existence of the Frink completion of a mo-
distributive poset. This completion will be obtained via the topological duality proved in
Theorem 4.25 in an analogous fashion as the canonical extension for bounded distributive
lattices was obtained via the Priestley duality [14]. This allows us to show that the Frink
completion of a mo-distributive poset has very nice properties, and we also get an interesting
result about the canonical extensions of distributive meet-semilattices.

Let P be a fixed but arbitrary mo-distributive poset and X(P ) = 〈FiprF (P ), τP ,BP 〉 its
dual DP-space. To simplify the notation we let X := X(P ) and PX := PX(P ). Recall that
the specialization order of X is the dual of the inclusion order of FiprF (P ). Let Down(X)

be the collection of all down-sets of the poset 〈X, 〉. It is well known that Down(X) is a
completely distributive algebraic lattice where the meet is the intersection and the join is the
union. We also know that the collections of all completely join-irreducible elements and of
all completely meet-irreducible elements of Down(X) are J ∞(Down(X)) := {↓F : F ∈
X} and M∞(Down(X)) := {(↑F)c : F ∈ X}, respectively. It is clear that PX ⊆ C(X) ⊆
Down(X) and C(X) is a sub-lattice of Down(X). Hence Down(X) is a completion of PX and
therefore it is a completion of P .

Theorem 6.5 Let P be a mo-distributive poset and X = X(P ) its dual DP-space. Then,
Down(X) is the Frink completion of P .

Proof Since P and PX are isomorphic, it is enough to prove that Down(X) is the Frink
completion of PX. Thus, we need to show that the completion Down(X) of PX is such that



346 Order (2018) 35:321–347

conditions (1) and (2) in Theorem 6.1 hold. To prove condition (1), let F ∈ FiF(PX) and
I ∈ Id(PX) and assume that

⋂F ⊆ ⋃I . Suppose towards a contradiction that F ∩I = ∅.
Let F := ϕ−1[F ] and I := ϕ−1[I]. It is clear that F ∩ I = ∅ and since ϕ : P → PX is
an order-isomorphism, we have F ∈ FiF(P ) and I ∈ Id(P ). Since P is mo-distributive, it
follows that there is H ∈ FiprF (P ) such that F ⊆ H and H ∩ I = ∅. We thus get H ∈ ⋂F
and H /∈ ⋃I , which is a contradiction. Then, F ∩I �= ∅. Hence, the completion Down(X)

of PX satisfies condition (1).
Now to prove condition (2), let D ∈ Down(X). Notice that

⋃ {⋂
F : F ∈ FiF(PX) and

⋂
F ⊆ D

}
⊆ D.

Let now F ∈ D. Since F ∈ FiprF (P ) and ϕ : P → PX is an order-isomorphism, it follows
that ϕ[F ] ∈ FiprF (PX). Let G ∈ ⋂

ϕ[F ]. So, G ∈ ϕ(a) for all a ∈ F and then F ⊆ G. Thus
G  F and since D ∈ Down(X), we have that G ∈ D. Hence

⋂
ϕ[F ] ⊆ D and it is clear

that F ∈ ⋂
ϕ[F ]. Then, F ∈ ⋃{⋂F : F ∈ FiF(PX) and

⋂F ⊆ D} and therefore

D =
⋃ {⋂

F : F ∈ FiF(PX) and
⋂

F ⊆ D
}

.

To prove the second part of condition (2), we note that

D ⊆
⋂ {⋃

I : I ∈ Id(PX) andD ⊆
⋃

I
}

.

To prove the other inclusion, let F ∈ ⋃I for all I ∈ Id(PX) such that D ⊆ ⋃I . As
F ∈ FiprF (P ), we have Fc ∈ Id(P ) and since ϕ is an order-isomorphism, it follows that
ϕ[Fc] ∈ Id(PX). We suppose that F /∈ D. So, F � G for all G ∈ D and this implies that for
every G ∈ D there exists aG ∈ G\F . Then, we have that D ⊆ ⋃

ϕ[Fc] and F /∈ ⋃
ϕ[Fc];

which is a contradiction. Thus, F ∈ D and hence

D =
⋂ {⋃

I : I ∈ Id(PX(P )) andD ⊆
⋃

I
}

.

Then, the completion Down(X) of PX satisfies condition (2). Therefore, by Theorem 6.1 we
have proved that Down(X) is the Frink completion of PX and thus it is the Frink completion
of P .

Therefore the following properties of the Frink completion of a mo-distributive poset
follow:

Corollary 6.6 Let P be a mo-distributive poset and P Fr its Frink completion. Then,

(1) P Fr is a completely distributive algebraic lattice;
(2) J∞(P Fr) andM∞(P Fr) are isomorphic posets.

These properties are the same that hold in the canonical extension of a distributive lattice,
see [14]. We finish this section by showing that the canonical extension (in the sense of
Dunn et al. [6]) of a distributive meet-semilattice may be considered a good completion for
it. And this provides an answer to a comment introduced in [9, pp. 69] related to a notion of
“canonical extension” in the setting of abstract algebraic logic.

Corollary 6.7 The canonical extension of a distributive meet-semilattice is a completely
distributive algebraic lattice.

Proof It is a consequence of Proposition 6.4 and Corollary 6.6.
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Remark 6.8 To define the Frink completion of a mo-distributive poset P , we choose the
polarity (F ,I) with F being the Frink filters and I being the up-directed downs-sets of P .
We have chosen the up-directed down-sets in place of the Frink ideals (which may seem at
first sight more natural) because we have the prime Frink filter theorem (Theorem 3.9) for
the up-directed down-sets. Thus we were able to prove the existence of the Frink completion
through the topological duality. The analogous of the prime Frink filter theorem but for
Frink ideals instead of up-directed down-sets is easily seen to fail.
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