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Abstract
The main aim of this paper is to obtain a free distributive semilattice extension for some
ordered sets satisfying a distributivity condition. That is, for an ordered set P satisfy-
ing a distributivity condition, we prove the existence of a distributive semilattice M and
a monomorphism e : P ↪→ M such that for every distributive semilattice L and every
monomorphism f : P ↪→ L there exists a unique semilattice embedding ̂f : M ↪→ L

such that f = ̂f ◦ e. To attain this, we will need to consider and study some concepts on
ordered sets like filters and a distributivity condition. We consider three notions of filters on
posets known in the literature, and we show some new relationships between them. We also
introduce and investigate three definitions of morphisms between posets.
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1 Introduction

In this paper, we present the definition of the free distributive meet-semilattice extension
of a poset, and we prove its existence for those posets satisfying a distributivity condition
(Section 6); we call these posets meet-order distributive (see Definition 4.1). To attain this
aim, we consider the concept of Frink filter introduced by Frink [6]. In Section 3, we estab-
lish some connections between Frink filters and other two notions of filters well known in
the literature. In Section 4, we present a distributivity condition on posets, and we study
their main properties. Section 5 is devoted to introducing three different definitions of mor-
phisms between posets; we study the relations between these three kinds of morphisms and
how are they related to the concepts of filters presented in the above section. In Section 7,
we establish a connection between the Frink filters of a meet-order distributive poset and
the filters of its distributive meet-semilattice extension.
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A consequence of having a free distributive meet-semilattice extension is that the cate-
gory of distributive meet-semilattices and meet-homomorphisms is a reflective subcategory
of the category of meet-order distributive posets and certain morphisms. Moreover, the fact
that every meet-order distributive poset has a free distributive meet-semilattice extension is
related to a Priestley-type duality, see [7].

In Section 8, we present some conclusions concerning the results previously obtaining
and some possible directions for future works.

2 Preliminaries

In this section, we introduce a few notations and terminologies. For more details about order
theoretical concepts, we refer the reader to [4, 9].

Let X be an arbitrary set. We write Y ⊆ω X to concisely say that Y is a (possibly empty)
finite subset of X.

Let P be a poset. A subset A ⊆ P is called an up-set of P when for all a ∈ A and b ∈ P ,
if a ≤ b, then b ∈ A. Dually, we have the notion of down-set. For every a ∈ P , ↑a denotes
the up-set {x ∈ P : a ≤ x} and dually, ↓a := {x ∈ P : x ≤ a}. For a subset A ⊆ P , we
define the sets ↑A = {x ∈ P : for somea ∈ A, a ≤ x} and dually ↓A. A subset A ⊆ P

is said to be up-directed if for all a, b ∈ A, there exists c ∈ A such that a, b ≤ c. Dually,
a subset B is said to be down-directed if for all a, b ∈ B, there exists c ∈ B such that
c ≤ a, b. For every subset X ⊆ P , let Xu denote the set of upper bounds of X and X� the
set of lower bounds of X. The two induced maps (.)u and (.)� on the power set P(P ) form
a Galois connection with respect to the relation ⊆. If the greatest lower bound of a (possible
empty) finite subset A = {a0, . . . , an−1} exists in P , we denote it by

∧

A or a0 ∧· · ·∧an−1;
and dually, if the least upper bound of A exists, we denote it by

∨

A or a0 ∨ · · · ∨ an−1.
We consider that

∧∅ exists in P if and only if P has a top element 1P ; and in such a
case,

∧∅ = 1P .
A semilattice is an algebra 〈S, ∗〉 of type (2) such that the operation ∗ is idempotent,

associative and commutative. Every semilattice 〈S, ∗〉 has naturally associated two partial
orders: x ≤∧ y ⇐⇒ x ∗ y = x, and x ≤∨ y ⇐⇒ x ∗ y = y. We will say that 〈S, ∗〉 is
a meet-semilattice if it is a semilattice with the partial order ≤∧ associated to S. Dually, a
join-semilattice is a semilattice 〈S, ∗〉 with the partial order ≤∨ associated to S.

If 〈S, ∗〉 is a meet-semilattice, then 〈S,≤∧〉 is a poset such that for all a, b ∈ S, a ∗ b

is the greatest lower bound of a and b in S. Conversely, if 〈P, ≤〉 is a poset such that the
greatest lower bound exists for every pair of elements in P , then 〈P, ∗〉 with the operation
∗ defined by a ∗ b = inf{a, b} for all a, b ∈ P is a meet-semilattice and ≤ = ≤∧. Thus, it
is usual for every meet-semilattice 〈S, ∗〉 to denote the operation ∗ by ∧. Dually, for a join-
semilattice 〈S, ∗〉, a ∗ b is the least upper bound of a and b. We denote the binary operation
of a join-semilattice by ∨.

Let 〈M, ∧〉 be a meet-semilattice. A non-empty subset F ⊆ M is said to be a filter of
M if is an up-set and closed under ∧. Let 〈J,∨〉 be a join-semilattice. A non-empty subset
I ⊆ J is said to be an ideal if is a down-set and closed under ∨.

The following definition can be found in [9, pp. 167]:

Definition 2.1 A join-semilattice 〈J,∨〉 is called distributive when for all a, b0, b1 ∈ J , if
a ≤ b0 ∨b1, then there exist a0, a1 ∈ J such that a = a0 ∨a1, a0 ≤ b0 and a1 ≤ b1. Dually,
a meet-semilattice 〈M, ∧〉 is distributive when for all a, b0, b1 ∈ M , if b0 ∧ b1 ≤ a, then
there exist a0, a1 ∈ M such that a = a0 ∧ a1, b0 ≤ a0 and b1 ≤ a1.
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3 Filters and Ideals on Posets

We will introduce three notions of filter and ideal for posets that are known in the literature.
We study the relations between these three concepts, and we present some new results about
them. The three different definitions of filter and ideal for posets that we consider are natural
generalisations of the notions of filter and ideal for lattices. For more details about the
concepts and results in this section, we refer the reader to [7, 14].

Definition 3.1 Let P be a poset. A non-empty subset F ⊆ P is said to be an order filter
of P if is a down-directed up-set. Dually, a non-empty subset I ⊆ P is said to be an order
ideal of P if is an up-directed down-set.

We denote by Fior(P ) the family of all order filters of P and by Idor(P ) the family of all
order ideals of P . It is clear that for every element a ∈ P , ↑a is an order filter of P and
↓a is an order ideal of P . Notice that the families Fior(P ) and Idor(P ) are not necessarily
closure systems because they are not necessarily closed under arbitrary intersections.

It is straightforward to check directly that if 〈M, ∧〉 is a meet-semilattice, then the col-
lection of all filters of M , Fi(M), coincide with the collection of all order filters Fior(M)

of the poset induced by M . That is, Fi(M) = Fior(M). Dually, if J is a join-semilattice,
then Id(J ) = Idor(J ). In particular, if M is a meet-semilattice with a top element, then
Fior(M) = Fi(M) is a closure system. The following proposition expresses the con-
verse of the previous statement, providing a new characterisation of when a poset P is a
meet-semilattice with a top element.

Proposition 3.2 Let P be a poset. Then, Fior(P ) is a closure system if and only if P is a
meet-semilattice with top element.

Proof Let P be a poset and assume that Fior(P ) is a closure system on P . We denote
by Fior(.) the closure operator associated with the closure system Fior(P ). Let a, b ∈ P .
Since Fior (↑a ∪ ↑b) is an order filter of P and a, b ∈ Fior (↑a ∪ ↑b), there exists
c ∈ Fior (↑a ∪ ↑b) such that c ≤ a and c ≤ b. So, we have ↑c ⊆ Fior (↑a ∪ ↑b)

and ↑a ∪ ↑b ⊆ ↑c. Then, Fior (↑a ∪ ↑b) = ↑c. Now, we show c = a ∧ b. We know
that c is a lower bound of a and b. Let d ∈ P be such that d ≤ a and d ≤ b. So,
↑a ∪ ↑b ⊆ ↑d and this implies that Fior (↑a ∪ ↑b) ⊆ ↑d. Then, ↑c ⊆ ↑d and thus
d ≤ c. Therefore c = a ∧ b. In order to prove that P has a top element, consider the set
F = ⋂{G : G ∈ Fior(P )}. Since Fior(P ) is closure system, it is closed under arbitrary
intersection. Then, F ∈ Fior(P ). So, F �= ∅. Let a ∈ F . We want to show that a is the top
element of P . Let b ∈ P . Since ↑b is an order filter of P , a ∈ ↑b. Consequently, b ≤ a.
Hence a is the top element of P . Therefore, we have proved that P is a meet-semilattice
with a top element. The converse implication was shown in the paragraph previous to this
proposition.

Definition 3.3 ([6]) Let P be a poset. A subset F of P is said to be a Frink filter of P if
for every A ⊆ω F , we have A�u ⊆ F . A subset I of P is said to be a Frink ideal of P if for
every A ⊆ω I , we have Au� ⊆ I .

Let us denote by FiF(P ) the collection of all Frink filters of P and by IdF(P ) the
collection of all Frink ideals of P .
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Notice that the empty set may be a Frink filter or a Frink ideal of a poset P . In fact, for
a poset P , we have that the empty set is a Frink filter (Frink ideal) of P if and only if P has
no top (bottom) element. This is a consequence of the fact that ∅�u = P u (∅u� = P �). It is
easy to check that each Frink filter is an up-set and each Frink ideal is a down-set. Moreover,
given a poset P , we have that for every a ∈ P , ↑a is a Frink filter of P and ↓a is a Frink
ideal of P . If M is a meet-semilattice, then FiF(M) \ {∅} = Fi(M); and dually, if J is a join-
semilattice, then IdF(J ) \ {∅} = Id(J ). Therefore, if L is a lattice, then FiF(L) \ {∅} = Fi(L)

and IdF(L) \ {∅} = Id(L).

Proposition 3.5 ([6]) Given an arbitrary poset P , FiF(P ) and IdF(P ) are closure systems.

Let P be a poset. We denote by FigF(.) the closure operator associated with FiF(P ).
Thus, for every X ⊆ P , FigF(X) is the least Frink filter of P containing X and it is called
the Frink filter generated by X.

Proposition 3.6 Let P be a poset and let X ⊆ P . Then,

FigF(X) =
⋃

{

X�u
0 : X0 ⊆ω X

}

.

It should be noted that FigF(A) = A�u whenever A ⊆ω P . For every poset P , we have
by Proposition 3.4 that FiF(P ) is a complete lattice, where for every family F ⊆ FiF(P ) the
meet and join are given by

∧

F =
⋂

F and
∨

F = FigF

(
⋃

F
)

.

A Frink filter is said to be finitely generated if is a Frink filter generated by a (possible
empty) finite subset of P . Let us denote by FifF(P ) the collection of all finitely generated
Frink filters of P . Notice that 〈FifF(P ), ∨,∅�u〉 is a sub-join-semilattice with bottom element
∅�u of the lattice FiF(P ). Indeed, for every X, Y ⊆ω P , FigF(X) ∨ FigF(Y ) = FigF(X ∪ Y )

with X ∪ Y ⊆ω P . Moreover, it should be noted that ∅�u = {1P }, if P has top element 1P

and ∅�u = ∅, if P has no top element.
Recall that a closure operator C on a set X is said to be finitary if for every Y ⊆ X,

C(Y ) = ⋃{C(Y0) : Y0 is a finite subset of Y }. A closure system C on a set X is said
to be algebraic if it is closed under unions of chains. We also recall that if C is a clo-
sure operator and C is its associated closure system, then C is finitary if and only if C is
algebraic.

From Proposition 3.5, we have that the closure operator FigF(.) is finitary, and thus the
closure system FiF(P ) is algebraic.

The next propositions shows the connection between order filters and Frink filters (order
ideals and Frink ideals). The proof can be found in [7, Lemma 2.1.8 and 2.1.9] and [14].

Proposition 3.7 Let P be a poset. Then, Fior(P ) ⊆ FiF(P ) and Idor(P ) ⊆ IdF(P ). In
general, these inclusions are strict.

Proposition 3.8 Let P be a poset with a top (bottom) element. Then, P is a meet-semilattice
(join-semilattice) if and only if Fior(P ) = FiF(P ) (Idor(P ) = IdF(P )).

We have shown that for every poset P , Fior(P ) ⊆ FiF(P ) and they are not necessarily
equal. Now, let us see how the Frink filters can be reached from the order filters. Let P

be a poset. Let Cor(P ) be the closure system on P generated by the collection Fior(P ) and
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we denote by Cor : P(P ) → P(P ) the closure operator associated with Cor(P ). Thus, for
every A ⊆ P , Cor(A) = ⋂{F ∈ Fior(P ) : A ⊆ F }. Now we consider the operator
C f

or : P(P ) → P(P ) defined as

C f
or(A) =

⋃

{Cor(A0) : A0 ⊆ω A}
for each A ⊆ P . Then, the operator C f

or has the following properties:

(1) C f
or(A) = Cor(A) whenever A ⊆ω P ;

(2) C f
or is a finitary closure operator and C f

or ≤ Cor (that is, C f
or(A) ⊆ Cor(A) for A ⊆ P );

(3) C f
or is the strongest of all finitary closure operators C on P such that C ≤ Cor.

The closure operator C f
or is sometime called the finitary companion of Cor. Let us denote

by Cf
or(P ) the closure system associated with C f

or. As Fior(P ) ⊆ FiF(P ) and since
C f

or(A0) = Cor(A0) is an intersection of order filters for every A0 ⊆ω P , it follows that
C f

or(A0) ∈ FiF(P ) for all A0 ⊆ω P . Then, given that FiF(P ) is an algebraic closure sys-
tem and since for every A ⊆ P the set {Cor(A0) : A0 ⊆ω A} is up-directed, it follows
that

C f
or(A) =

⋃

{Cor(A0) : A0 ⊆ω A} ∈ FiF(P )

for all A ⊆ P .

Proposition 3.9 Let P be a poset and A0 ⊆ω P . Then C f
or(A0) = A�u

0 .

Proof Let A0 ⊆ω P . Since C f
or(A0) ∈ FiF(P ) and A0 ⊆ C f

or(A0), it follows that A�u
0 ⊆

C f
or(A0). Let a ∈ C f

or(A0) and let b ∈ A�
0. So A0 ⊆ ↑b. Because a ∈ C f

or(A0), a belongs
to each order filter that contains A0. Then, a ∈ ↑b and thus b ≤ a. So a ∈ A�u

0 and hence
C f

or(A0) ⊆ A�u
0 . Therefore C f

or(A0) = A�u
0 .

Proposition 3.10 Let P be a poset. Then Cf
or(P ) = FiF(P ).

Proof We already know that Cf
or(P ) ⊆ FiF(P ). Now let F ∈ FiF(P ). Let us show that

C f
or(F ) = F . Let a ∈ C f

or(F ). So, there is A0 ⊆ω F such that a ∈ Cor(A0). So A�u
0 ⊆ F

and then, by Proposition 3.8, we have Cor(A0) ⊆ F . Thus a ∈ F . Hence C f
or(F ) = F .

Now we consider the third notion of filter and ideal on posets.

Definition 3.4 Let P be a poset. A subset F ⊆ P is said to be a ∧-filter of P when F is an
up-set and if a1, . . . , an ∈ F and a1 ∧ · · · ∧ an exists in P , then a1 ∧ · · · ∧ an ∈ F . Dually,
a subset I ⊆ P is said to be a ∨-ideal of P when I is a down-set and if a1, . . . , an ∈ I and
a1 ∨ · · · ∨ an exists in P , then a1 ∨ · · · ∨ an ∈ I .

Notice that for any poset P , the empty set is always a ∧-filter (∨-ideal), even if P

has a top (bottom) element. For this reason, we consider the following notation depend-
ing if P has or not a top (bottom) element. Let P be a poset. If P has no a top element,
then Fi∧(P ) denotes the collection of all ∧-filters of P including the empty set, and if
P has a top element, then Fi∧(P ) denotes the collection of all non-empty ∧-filters of
P . Dually, Id∨(P ) denotes the collection of all ∨-ideals of P if P has no a bottom ele-
ment, and Id∨(P ) denotes the collection of all non-empty ∨-ideals of P , if P has a bottom
element.
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Proposition 3.11 Let P be a poset. Then,

Fior(P ) ⊆ FiF(P ) ⊆ Fi∧(P ) and Idor(P ) ⊆ IdF(P ) ⊆ Id∨(P ).

Proposition 3.12 Let P be an arbitrary poset. Then, Fi∧(P ) and Id∨(P ) are algebraic
closure systems on P .

4 Distributive posets

The condition of distributivity for posets that we discuss in this paper is due to David
and Erné [5]. This concept of distributivity on posets is a generalisation of the usual
notion of distributivity in Lattice Theory. We also have to say that there are other possible
generalisations of the concept of distributivity on posets, see for instance [3, 11–13].

Definition 4.1 ([5]) Let P be a poset.

(1.) We say that P is meet-order distributive if for every b1, . . . , bn, a ∈ P the following
condition is satisfied:

a ∈ {b1, . . . , bn}�u =⇒ there are a1, . . . , ak ∈ ↑b1 ∪ · · · ∪ ↑bn

such that a = a1 ∧ · · · ∧ ak .
(4.1)

(2.) We say that P is join-order distributive if for every b1, . . . , bn, a ∈ P the following
condition is satisfied:

a ∈ {b1, . . . , bn}�u =⇒ there are a1, . . . , ak ∈ ↓b1 ∪ · · · ∪ ↓bn

such that a = a1 ∨ · · · ∨ ak .
(4.2)

Remark 4.2 In [5], a join-order distributive poset is called an ideal-distributive poset. In the
above definition, when we write a = a1 ∧ · · · ∧ ak (a = a1 ∨ · · · ∨ ak), we mean that the
meet (join) of a1, . . . , ak exists and is equal to a. Moreover, it is straightforward to show
directly that in each poset P the converse implications of Eqs. 4.1 and 4.2 always hold.

Proposition 4.3 Let P be a poset.

(1) If P is meet-order distributive, then FiF(P ) = Fi∧(P ).
(2) If P is join-order distributive, then IdF(P ) = Id∨(P ).

Proof (1) Assume that P is a meet-order distributive poset. By Proposition 3.10, we
have FiF(P ) ⊆ Fi∧(P ). Now let F ∈ Fi∧(P ). Let a1, . . . , an ∈ F and let a ∈
{a1, . . . , an}�u. Since P is meet-order distributive, there exist b1, . . . , bk ∈ ↑a1 ∪
· · · ∪ ↑an such that a = b1 ∧ · · · ∧ bk . Thus, since F is an up-set, it follows that
b1, . . . , bk ∈ F . So, a = b1 ∧ · · · ∧ bk ∈ F . Then, F is a Frink filter and therefore
Fi∧(P ) ⊆ FiF(P ).

(2) It can be shown dually.

The following result is a nice characterisation of the meet-order distributivity and join-
order distributivity.

Theorem 4.4 ([5]) Let P be a poset. Then, P is meet-order distributive if and only if the
lattice FiF(P ) is distributive. Dually, P is join-order distributive if and only if the lattice
IdF(P ) is distributive.
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Examples of posets that are meet-order distributive and join-order distributive, and
posets that are meet-order distributive but are not join-order distributive can be found in
[7, Example 2.2.14].

Let P be a poset. Recall that 〈FifF(P ), ∨〉 is the join-semilattice of all finitely generated
Frink filters of P . The following proposition is a new characterisation of the meet-order
distributivity condition through FifF(P ).

Proposition 4.5 Let P be a poset. P is meet-order distributive if and only if the join-
semilattice 〈FifF(P ), ∨〉 is distributive.

Proof Let P be a poset. We assume first that P is meet-order distributive. In order to prove
that 〈FifF(P ), ∨〉 is a distributive join-semilattice, let F1 := A�u

1 , F2 := A�u
2 and G := B�u

for some A1, A2,B ⊆ω P and assume that G ⊆ F1 ∨ F2. We observe that B ⊆ G ⊆
F1 ∨ F2 = (A1 ∪ A2)

�u. So, since P is meet-order distributive, for every b ∈ B there exists
Ab ⊆ω ↑(A1 ∪ A2) such that b = ∧

Ab. Since G = B�u, we have Ab ⊆ G for all b ∈ B.
For every b ∈ B, let A′

b := {x ∈ Ab : (∃y ∈ A1)(y ≤ x)} and A′′
b := {x ∈ Ab : (∃y ∈

A2)(y ≤ x)}. Let now A′ := ⋃

b∈B A′
b and A′′ := ⋃

b∈B A′′
b . Then, since A′ ⊆ F1 and

A′′ ⊆ F2, we obtain that G1 := A′�u ⊆ F1 and G2 := A′′�u ⊆ F2. It only remain to show
that G = G1 ∨ G2. Notice that for every b ∈ B, we have Ab = A′

b ∪ A′′
b . Then,

G1 ∨ G2 = (

A′ ∪ A′′)�u =
(

⋃

b∈B

A′
b ∪

⋃

b∈B

A′′
b

)�u

=
(

⋃

b∈B

Ab

)�u

⊆ G.

Hence, G1 ∨ G2 ⊆ G. On the other hand, observe that for every b ∈ B, Ab ⊆ω

⋃

b∈B Ab.
So, b = ∧

Ab ∈ (
⋃

b∈B Ab)
�u for all b ∈ B. Then, B ⊆ G1 ∨ G2 and this implies

G ⊆ G1 ∨G2. Hence, G = G1 ∨G2 for G1,G2 ∈ FifF(P ) such that G1 ⊆ F1 and G2 ⊆ F2.
Therefore, 〈FifF(P ), ∨〉 is a distributive join-semilattice.

Conversely, assume that the join-semilattice 〈FifF(P ), ∨〉 is distributive. Let a, a1, . . . ,

an ∈ P be such that a ∈ {a1, . . . , an}�u. So, ↑a ⊆ ↑a1 ∨ · · · ∨ ↑an. Then, there exist
F1, . . . , Fn ∈ FifF(P ) such that ↑a = F1 ∨ · · · ∨ Fn and Fi ⊆ ↑ai for all i = 1, . . . , n.
For every i = 1, . . . , n, let Fi = A�u

i for some Ai ⊆ω P and let B := ⋃n
i=1 Ai . Then,

↑a = F1 ∨ · · · ∨ Fn = A�u
1 ∨ · · · ∨ A�u

n = B�u. Hence, a = ∧

B and B ⊆ F1 ∪ · · · ∪ Fn ⊆
↑a1 ∪ · · · ∪ ↑an. Therefore, P is meet-order distributive.

Corollary 4.6 If P is a finite meet-order distributive poset, then FiF(P ) = FifF(P ).
Therefore, FifF(P ) is a bounded distributive lattice.

We close this section noting that the condition of meet-order distributivity (join-order
distributivity) behaves well with the formation of finite direct products (see [4, 1.25]),
and with finite linear sums (see [4, 1.24]) of bounded meet-order distributive (join-order
distributive) posets. That is, the finite direct product (linear sum) of bounded meet-order
distributive posets is a meet-order distributive poset.

5 Morphism Between Posets

In this part, we introduce the definitions of certain morphisms between posets that intend to
be a generalisation of the notion of homomorphism in Lattice Theory.
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Definition 5.1 Let P and Q be posets and let h : P → Q be an order preserving map. We
say that h is a down-directed morphism (dd-morphism for short) when (1) for all a, b ∈ P

and u ∈ Q, if u ≤ h(a), h(b), then there exists c ∈ P such that u ≤ h(c) and c ≤ a, b; and
(2) if P has a top element 1P , then h(1P ) is the top element of Q. Dually, we have the notion
of up-directed morphism (ud-morphism for short). We will say that h is an order-morphism
if h is a dd-morphism and ud-morphism.

It is easy to check that for all meet-semilattices M and L, a map h : M → L is a meet-
homomorphism (preserving top element, if it exists) if and only if h is a down-directed
morphism. Dually for join-semilattices and up-directed morphism. Hence, a map h : M →
L from a lattice M to a lattice L is a lattice homomorphism (preserving bounds, if they
exist) if and only if h is an order-morphism.

Proposition 5.2 Let P and Q be posets with top elements. A map h : P → Q is a down-
directed morphism if and only if h−1[G] ∈ Fior(P ) for all G ∈ Fior(Q).

Proof Assume that h is a down-directed morphism and let G ∈ Fior(Q). Since h(1P ) is the
top element of Q, it follows that h−1[G] �= ∅. Let a ∈ h−1[G] and a ≤ b. Thus, h(a) ∈ G

and h(a) ≤ h(b). Then b ∈ h−1[G]. Let now a, b ∈ h−1[G]. Since G is an order filter,
it follows that there is u ∈ G such that u ≤ h(a), h(b). Then, there exists c ∈ P such
that u ≤ h(c) and c ≤ a, b. Hence c ∈ h−1[G] and c ≤ a, b. Thus h−1[G] ∈ Fior(P ).
Conversely, assume that h−1[G] ∈ Fior(P ) for all G ∈ Fior(Q). First, let us show that h is
order preserving. Let a, b ∈ P be such that a ≤ b. Since a ∈ h−1[↑h(a)] ∈ Fior(P ), we
have that b ∈ h−1[↑h(a)] and thus h(a) ≤ h(b). Let now a, b ∈ P and u ∈ Q be such that
u ≤ h(a), h(b). Since a, b ∈ h−1[↑u] ∈ Fior(P ), there exists c ∈ h−1[↑u] such that c ≤
a, b. Finally, since 1P ∈ h−1[{1Q}], it follows that h(1P ) = 1Q. Hence h is a down-directed
morphism.

Definition 5.3 Let P and Q be posets. A map h : P → Q is said to be an �u-morphism if
for every A ⊆ω P , we have

a ∈ A�u implies h(a) ∈ h[A]�u.

Dually, the dual notion is that one of an �u-morphism. We will say that h is an �u-�u-
morphism if h is an �u-morphism and �u-morphism.

The notion of �u-morphism was defined in [8] under the name inf-homomorphism and
the concept of �u-morphism was considered in [1, 2] in the setting of semilattices under the
name of sup-homomorphism.

The proof of the following proposition is not hard, and thus we leave the details to the
reader.

Proposition 5.4 Let P and Q be posets and let h : P → Q be a map. If h is an �u-
morphism and P has a top element 1P , then h(1P ) is the top element of Q.

It is straightforward to show that �u-morphisms and meet-homomorphisms (preserving
top element, if it exists) coincide in the setting of meet-semilattices.

Proposition 5.5 ([8]) Let P and Q be posets and let h : P → Q be a map. Then, h is an
�u-morphism if and only if h−1[G] ∈ FiF(P ) for all G ∈ FiF(Q).
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Proposition 5.6 Let P and Q be posets. If h : P → Q is a down-directed morphism, then
h is an �u-morphism.

Proof Let A ⊆ω P and a ∈ A�u. If A = ∅, then a is the top element of P and thus h(a) is
the top element of Q. Then h(a) ∈ h[A]�u. Suppose that A �= ∅ and A = {a1, . . . , an}. Let
u ∈ h[A]�. So u ≤ h(ai) for all i = 1, . . . , n. Since h is a down-directed morphism, there
exists c ∈ P such that u ≤ h(c) and c ≤ ai for all i = 1, . . . , n. That is, c ∈ A� and then
c ≤ a. Thus u ≤ h(c) ≤ h(a). Hence h(a) ∈ h[A]�u. Therefore, h is an �u-morphism.

The map in Fig. 1 is an example of an �u-morphism that is not a down-directed mor-
phism between two posets. Moreover, notice that the posets in Fig. 1 are meet-order and
join-order distributive.

Definition 5.7 Let P and Q be posets. A map h : P → Q is called an �u-embedding (�u-
embedding) if is an �u-morphism (a �u-morphism) and an order-embedding. Moreover, h

is said to be an �u-�u-embedding if h is an �u-embedding and a �u-embedding.

Proposition 5.8 ([8]) Let P and Q be posets and let h : P → Q be a map. Then, h is an
�u-embedding if and only if for every A ⊆ω P and a ∈ P ,

a ∈ A�u ⇐⇒ h(a) ∈ h[A]�u. (5.1)

Now we present the third notion of morphism between posets.

Definition 5.9 Let P and Q be posets. We say that a map h : P → Q is a ∧-morphism if h

preserves all existing finite meets and h(1P ) is the top element of Q, if P has a top element
1P . That is, h is a ∧-morphism if and only if for each a1, . . . , an ∈ P such that a1 ∧· · ·∧an

exists in P , then h(a1)∧· · ·∧h(an) exists in Q and h(a1 ∧· · ·∧an) = h(a1)∧· · ·∧h(an);
and h(1P ) is the top element of Q, if 1P is the top element of P . Th concept of ∨-morphism
can be defined dually.

Notice that every ∧-morphism or ∨-morphism is order preserving.

Proposition 5.10 Let P and Q be posets and h : P → Q a map. Then, h is a ∧-morphism
if and only if h−1[G] ∈ Fi∧(P ) for all G ∈ Fi∧(Q).

Fig. 1 An �u-morphism that is
not a down-directed morphism
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Proof First, assume that h is a ∧-morphism and let G ∈ Fi∧(Q). Notice that if P has a
top element 1P , then 1P ∈ h−1[G] and thus h−1[G] is non-empty whenever P has a top
element. Now, since h is order preserving and G is an up-set of Q, it follows that h−1[G]
is an up-set of P . Let a1, . . . , an ∈ h−1[G] be such that a1 ∧ · · · ∧ an exists in P . Then,
h(a1∧· · ·∧an) = h(a1)∧· · ·∧h(an) and h(a1), . . . , h(an) ∈ G. So, since G is a ∧-filter, we
have h(a1 ∧· · ·∧an) = h(a1)∧· · ·∧h(an) ∈ G. Hence, a1 ∧· · ·∧an ∈ h−1[G]. Therefore,
h−1[G] ∈ Fi∧(P ).

Conversely, suppose that h−1[G] ∈ Fi∧(P ) for all G ∈ Fi∧(Q). Suppose that P has a
top element 1P . Then 1P ∈ F for all F ∈ Fi∧(P ). Thus h(1P ) ∈ G for all G ∈ Fi∧(Q).
Hence h(1P ) is the top element of Q. Let us show that h is order preserving. Let a, b ∈ P

be such that a ≤ b. Since a ∈ h−1 [↑h(a)] ∈ Fi∧(P ), it follows that b ∈ h−1 [↑h(a)].
Then, h(a) ≤ h(b). Now let a1, . . . , an ∈ P be such that a1 ∧ · · · ∧ an exists in P . Since
h is order preserving, we have h(a1 ∧ · · · ∧ an) ≤ h(ai) for all i ∈ {1, . . . , n}. Let y ∈ Q

be such that y ≤ h(ai) for all i ∈ {1, . . . , n}. So, h(a1), . . . , h(an) ∈ ↑y ∈ Fi∧(Q).
Then, a1, . . . , an ∈ h−1 [↑y] ∈ Fi∧(P ) and this implies a1 ∧ · · · ∧ an ∈ h−1 [↑y]. Hence,
y ≤ h(a1 ∧ · · ·∧ an). That is, we proved that h(a1 ∧ · · ·∧ an) is the greatest lower bound of
{h(a1), . . . , h(an)}, i.e., h(a1∧· · ·∧an)=h(a1)∧· · ·∧h(an). Therefore, h is a ∧-morphism.

Proposition 5.11 Let P and Q be posets and let h : P → Q be a map. If h is an �u-
morphism, then h is a ∧-morphism.

Proof We assume that h : P → Q is an �u-morphism. Let a1, . . . , an ∈ P be such that
a1 ∧ · · · ∧ an exists in P . Since h is order preserving, we have h(a1 ∧ · · · ∧ an) ≤ h(ai)

for all i ∈ {1, . . . , n}. Let y ∈ Q be such that y ≤ h(ai) for all i ∈ {1, . . . , n}. So,
y ∈ {h(a1), . . . , h(an)}�. Since a1 ∧ · · · ∧ an ∈ {a1, . . . , an}�u and h is an �u-morphism,
h(a1 ∧ · · · ∧ an) ∈ {h(a1), . . . , h(an)}�u, whereupon y ≤ h(a1 ∧ · · · ∧ an). Hence, we
have shown that h(a1 ∧ · · · ∧ an) is the greatest lower bound of {h(a1), . . . , h(an)}, i.e.,
h(a1 ∧ · · · ∧ an) = h(a1) ∧ · · · ∧ h(an). Therefore, h is a ∧-morphism.

Example 5.12 Figure 2 shows a map h from a non-meet-order distributive poset P to a
meet-order distributive poset Q. It is straightforward to check that h is a ∧-morphism but is
not an �u-morphism.

The following proposition is an immediate consequence from Proposition 4.3 and by
Propositions 5.5 and 5.10.

Fig. 2 A ∧-morphism that is not an �u-morphism
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Proposition 5.13 Let P and Q be meet-order distributive posets. Let h : P → Q be a map.
Then, h is an �u-morphism if and only if h is a ∧-morphism.

We summarise in Fig. 3 the hierarchy of all morphisms between posets considered in
this section.

6 The Free Distributive Meet-Semilattice Extension

In this section, we shall prove that every meet-order distributive poset can be extended to a
distributive meet-semilattice enjoying a universal property. Then, we show that the category
of distributive meet-semilattices with top element and meet-homomorphisms preserving top
element is a reflective subcategory of the category of meet-order distributive posets with top
element and �u-morphisms.

From now on, all meet-semilattices are considered to have a top element and meet-
homomorphisms between meet-semilattices with top element are considered to preserve
top elements. We will use the terminology “meet-semilattice” as an abbreviation of

Fig. 3 Hierarchy of morphisms between posets
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“meet-semilattice with top element” and “meet-homomorphism” as an abbreviation of
“meet-homomorphism preserving top element”.

Recall the definition of distributive meet-semilattice, see Definition 2.1.

Definition 6.1 Let P be a poset. A free distributive meet-semilattice extension of P is a pair
〈M, e〉 such that M is a distributive meet-semilattice and e : P → M is an �u-u�-embedding
satisfying the following universal property: if 〈L,∧〉 is a distributive meet-semilattice and
f : P → L is an �u-u�-embedding, then there is a unique meet-embedding h : M → L

such that h ◦ e = f .

First, we establish a very nice characterisation of when a pair 〈M, e〉 is a free dis-
tributive meet-semilattice extension of a poset P . It should be noted that if 〈M,∧〉 is a
meet-semilattice, then A�u = ↑(

∧

A) for every A ⊆ω M .

Theorem 6.2 Let P be a poset. A pair 〈M, e〉 is a free distributive meet-semilattice exten-
sion of P if and only if M is a distributive meet-semilattice and e : P → M is a map such
that:

(E1) e is an �u-�u-embedding;
(E2) e[P ] is finitely meet-dense on M (that is, for every x ∈ M there is A ⊆ω P such that

x = ∧

e[A]).

Proof We assume first that 〈M, e〉 is a free distributive meet-semilattice extension of P .
We only need to show that condition (E2) holds. Let L be the sub-meet-semilattice of M

generated by e[P ], i.e., L = {x ∈ M : (∃A ⊆ω P )(x = ∧

e[A]}. It is clear that the
map ê : P → L defined by ê(a) = e(a) is an �u-u�-embedding. Then, there exists a meet-
embedding h : M → L such that h◦e = ê. Now, let us show that e[P ] is finitely meet-dense
on M . Let x ∈ M . So h(x) ∈ L and thus there is A ⊆ω P such that

h(x) =
∧

e[A] =
∧

ê[A] =
∧

(h ◦ e)[A] = h(
∧

e[A]).

Since h is injective, it follows that x = ∧

e[A].
Conversely, suppose that 〈M, e〉 satisfies conditions (E1) and (E2). Let 〈L,∧〉 be a dis-

tributive meet-semilattice and f : P → L an �u-u�-embedding. We define h : M → L as
follows: for every x ∈ M , h(x) = ∧

f [A] when x = ∧

e[A] for some A ⊆ω P . First,
we show that h is well defined. Let A,B ⊆ω P and suppose that

∧

e[A] = ∧

e[B]. So
∧

e[A] ≤ e(b) for all b ∈ B and then e(b) ∈ ↑(
∧

e[A]) for all b ∈ B. Since e is an
�u-embedding, it follows that b ∈ A�u for all b ∈ B. Since f is an �u-morphism, we
obtain that f (b) ∈ ↑(

∧

f [A]) for all b ∈ B. Then
∧

f [A] ≤ ∧

f [B]. Similarly, we have
∧

f [B] ≤ ∧

f [A] and thus
∧

f [A] = ∧

f [B]. Hence h is well defined. With a similar
argument to the previous one, we can prove that h is injective. Moreover, it is straightfor-
ward to prove directly that h is a meet-homomorphism and h ◦ e = f . Now, we show that h

is unique. Suppose that g : M → L is a meet-embedding such that g ◦ e = f . Let x ∈ M .
Then, there is A ⊆ω P such that x = ∧

e[A]. Thus, we have

h(x) =
∧

f [A] =
∧

g[e[A]] = g(
∧

e[A]) = g(x).

Hence, h = g. This completes the proof.

Usuario
Resaltado

Usuario
Nota adhesiva
Es necesario la condición que P sea meet-order distributive.Ver la Fe de Errata y las preguntas del Chino
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Proposition 6.3 Let P be a poset. If there exists a free distributive meet-semilattice
extension 〈M, e〉 of P , then P is meet-order distributive.

Proof Let 〈M, e〉 be a free distributive meet-semilattice extension of P and let
a, a1, . . . , an ∈ P be such that a ∈ {a1, . . . , an}�u. Since e is an �u-morphism, it follows
that e(a) ∈ ↑(e(a1) ∧ · · · ∧ e(an)). So e(a1) ∧ · · · ∧ e(an) ≤ e(a). Since M is a distributive
meet-semilattice, we have that there exist x1, . . . , xn ∈ M such that e(a) = x1∧· · ·∧xn and
e(ai) ≤ xi for all i = 1, . . . , n. Now, by condition (E2), we have that for each i = 1, . . . , n

there exists Ai ⊆ω P such that xi = ∧

e[Ai]. Then e(a) = ∧

e[A1] ∧ · · · ∧ ∧

e[An] =
∧

e[⋃n
i=1 Ai]. We thus obtain that e(a) ∈ ↑(

∧

e[⋃n
i=1 Ai]) and then, since e is an �u-

embedding, it follows that a ∈ (
⋃n

i=1 Ai)
�u. We also have that e(a) ≤ e(b) for all b ∈

⋃n
i=1 Ai . As e is an order-embedding, a ≤ b for all b ∈ ⋃n

i=1 Ai and then a ∈ (
⋃n

i=1 Ai)
�.

So, we have obtained that a ∈ (
⋃n

i=1 Ai)
�u and a ∈ (

⋃n
i=1 Ai)

�; and this implies that
a = ∧

(
⋃n

i=1 Ai). Moreover, for each i = 1, . . . , n we have e(ai) ≤ xi = ∧

e[Ai] ≤ e(b)

for all b ∈ Ai and thus for each i = 1, . . . , n, ai ≤ b for all b ∈ Ai . Therefore, P is
meet-order distributive.

It follows by a standard categorical argument that the free distributive meet-semilattice
extension of a poset P , if it exists, is unique up to isomorphism. That is:

Proposition 6.4 Let P be a poset and let 〈M, e〉 and 〈M ′, e′〉 be free distributive meet-
semilattice extensions of P . Then there is an isomorphism h : M → M ′ such that e′ =
h ◦ e.

We show next that there exists a free distributive meet-semilattice extension for
every meet-order distributive poset. Let P be a poset. We consider the meet-semilattice
〈FifF(P ), ∧d〉 as the dual of the join-semilattice 〈FifF(P ), ∨〉. That is, F1 ∧d F2 := F1 ∨ F2
for all F1, F2 ∈ FifF(P ). Thus, the order ≤d associated with ∧d on FifF(P ), is given by
F1 ≤d F2 ⇐⇒ F2 ⊆ F1.

Theorem 6.5 Let P be a meet-order distributive poset. Then, 〈FifF(P ), ∧d〉 is the free
distributive meet-semilattice extension of P .

Proof By Proposition 4.5, it is clear that the meet-semilattice 〈FifF(P ), ∧d〉 is distributive.
Let e : P → FifF(P ) be the map defined by e(a) = ↑a for each a ∈ P . Let us show that
conditions (E1) and (E2) are satisfied for 〈〈FifF(P ), ∧d〉, e〉.

Let F ∈ FifF(P ). So, F = A�u for some A ⊆ω P . Then, we have F = ∨

a∈A ↑a =
∨

a∈A e(a) = ∧

d e[A]. Thus, e[P ] is finitely meet-dense on FifF(P ) and hence condition
(E2) holds. It is straightforward to show that e is an order-embedding. In order to show that
e is an �u-u�-morphism, let A ⊆ω P and b ∈ P . First, we assume b ∈ A�u and we prove
that e(b) ∈ e[A]�u. So, let F ∈ FifF(P ) be such that F ≤d e(a) for all a ∈ A. So, e(a) ⊆ F

for all a ∈ A; this implies that A ⊆ F . Then, since F is a Frink filter, b ∈ F . Thus e(b) ⊆ F

and consequently F ≤d e(b). Then, e(b) ∈ e[A]�u and hence e is an �u-morphism. Now,
we show that e is a �u-morphism. So, assume b ∈ Au� and let F ∈ FifF(P ) be such that
e(a) ≤d F for all a ∈ A. Then, we have F ⊆ ⋂

a∈A ↑a ⊆ ↑b; that is, e(b) ≤d F . Thus,
e(b) ∈ e[A]u�. This proves that e is a u�-morphism. Hence, we have proved that e is an �u-
�u-embedding and thus condition (E1) holds. Therefore 〈FifF(P ), ∧d〉 is the free distributive
meet-semilattice extension of P .
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Hereinafter, let us denote by 〈M(P), eP 〉 or simply by M(P) the free distributive meet-
semilattice extension of a meet-order distributive poset P . We drop the subscript on eP

when confusion is unlikely. Notice that if P has a top (bottom) element 1P (0P ), then e(1P )

(e(0p)) is the top (bottom) element of M(P).

Proposition 6.6 ([12]) Let P be a meet-order distributive poset. If P is a join-semilattice,
then FifF(P ) is a sub-lattice of FiF(P ).

Corollary 6.7 If P is a meet-order distributive join-semilattice, then the free distributive
meet-semilattice extension of P is a distributive lattice.

We close this section showing a categorical result. More precisely, we prove the existence
of an adjoint (Theorem 6.12). We start with the following results.

Proposition 6.8 Let P and Q be meet-order distributive posets. If h : P → Q is an
�u-morphism, then there is a unique meet-homomorphism M(h) : M(P) → M(Q) such
that eQ ◦ h = M(h) ◦ eP . Moreover, if h is an �u-embedding, then M(h) is a meet-
embedding.

Proof By condition (E2), for every x ∈ M(P) there is A ⊆ω P such that x = ∧

eP [A]. So,
we define M(h) : M(P) → M(Q) as follows: for every x ∈ M(P), M(h)(x) = ∧

(eQ ◦
h)[A] if x = ∧

eP [A] for some A ⊆ω P . By a similar argument used in the proof of
Theorem 6.2, we have that M(h) is well defined. It is straightforward to show that M(h)

is a meet-homomorphism and satisfies eQ ◦ h = M(h) ◦ eP . If k : M(P) → M(Q) is a
meet-homomorphism such that eQ ◦ h = k ◦ eP , then

M(h)(
∧

eP [A]) =
∧

(eQ ◦ h)[A] =
∧

(k ◦ eP )[A] = k(
∧

eP [A])
for all A ⊆ω P . Hence, k = M(h). Finally, by a similar argument used to prove that h is
well defined, we can prove that M(h) is injective whenever h is an order embedding.

Remark 6.9 It is straightforward to check that M(h) : M(P) → M(Q) preserves top
elements whenever P and Q have top elements.

Proposition 6.10 Let P , Q and R be meet-order distributive posets and let h : P → Q and
g : Q → R be �u-morphisms. Then, M(g ◦ h) = M(g) ◦ M(h). Moreover, if idP : P → P

is the identity map, then M(idP ) = idM(P).

Proof We know that the composition g ◦ h : P → R is an �u-morphism. Then, by Propo-
sition 6.8, M(g ◦ h) : M(P) → M(R) is the unique meet-homomorphism such that
eR ◦ (g ◦ h) = M(g ◦ h) ◦ eP . By Proposition 6.8 again, we have that M(h) : M(P) → (Q)

and M(g) : M(Q) → M(R) are meet-homomorphisms such that eQ ◦ h = M(h) ◦ eP and
eR ◦ g = M(g) ◦ eQ. Then, we have

eR ◦ (g ◦ h) = (eR ◦ g) ◦ h = (M(g) ◦ eQ) ◦ h = M(g) ◦ (eQ ◦ h)

= M(g) ◦ (M(h) ◦ eP ) = (M(g) ◦ M(h)) ◦ eP .

Hence M(g ◦ h) = M(g) ◦ M(h). Moreover, since eP ◦ idP = idM(P) ◦ eP , it follows that
idM(P) = M(idP ).
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Let us denote by MDP the category formed by all meet-order distributive posets with
a top element and all �u-morphisms. It should be clear that the composition of morphisms
in this category is the usual set-theoretical composition of functions and the identity mor-
phism for an object of MDP is the identity map. We also consider the category whose
objects are all distributive meet-semilattices with a top element and morphisms are all
meet-homomorphisms preserving top elements. We denote this category by DMS. From
Propositions 6.8 and 6.10, the map M(−) sending every meet-order distributive poset P

to its free distributive meet-semilattice extension M(P) extends to a functor M : MDP →
DMS.

Notice that if M is a distributive meet-semilattice, then the free distributive meet-
semilattice extension of M is (up to isomorphism) M . Thus, we have an immediate
consequence of Proposition 6.8.

Corollary 6.11 Let P be a meet-order distributive poset and let L be a distributive meet-
semilattice. If h : P → L is an �u-morphism, then there exists a unique meet-homomor-
phism M(h) : M(P) → L such that h = M(h) ◦ eP . Moreover, if h is an �u-embedding,
then M(h) is a meet-embedding.

Recall that every meet-semilattice M can be defined as a poset where the greatest lower
bound exists for every pair of elements of M . Then, we can consider the category DMS as a
full subcategory of MDP, and thus we can define the inclusion functor U : DMS → MDP.
Then, by Corollary 6.11, we obtain:

Theorem 6.12 The functor M : MDP → DMS is a left adjoint for the functor U and
therefore the category DMS is a reflective subcategory of the category MDP.

Remark 6.13 A free distributive lattice extension for a meet-order distributive poset P can
be obtained from the free distributive meet-semilattice extension M(P) of P and from the
free distributive lattice extension of the distributive meet-semilattice M(P) developed by
Bezhanishvily and Jansana in [2]. We refer the reader to [7] for more details about this topic.

7 The Connection Between the Frink Filters of a Meet-Order
Distributive Poset and the Filters of its Free Distributive
Meet-Semilattice Extension

Throughout of this section, we will consider that all posets and all meet-semilattices have
top elements. The extension of the results of this section to the case without top element is
quite direct and can be seen in [7].

From now on, let P be a meet-order distributive poset with a top element and 〈M, e〉 its
free distributive meet-semilattice extension. We recall that for a subset X ⊆ P , FigF(X)

denotes the Frink filter of P generated by X. Similarly, we denote by Fi(M) the lattice of
all filters of M and by Fig(.) the closure operator associated with the closure system Fi(M).

Proposition 7.1 If F is a Frink filter of P , then e−1
[

Fig(e[F ])] = F .

Proof Let F be a Frink filter of P . Since e[F ] ⊆ Fig(e[F ]), we obtain F ⊆ e−1[Fig(e[F ])].
Let now a ∈ e−1[Fig(e[F ])]. Thus, there are a1, . . . , an ∈ F such that e(a1)∧· · ·∧e(an) ≤
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e(a). Since e is an �u-embedding, it follows that a ∈ {a1, . . . , an}�u and then a ∈ F . Hence
e−1

[

Fig(e[F ])] = F .

Proposition 7.2 If G is a filter of M , then e−1[G] is a Frink filter of P and G =
Fig(e[e−1[G]]).

Proof Let G be a filter of M . It is clear by Proposition 5.5 that e−1[G] ∈ FiF(P ). Now, it
is also clear that Fig(e[e−1[G]]) ⊆ G. Let x ∈ G. By (E2), x = e(a1) ∧ · · · ∧ e(an) for
some a1, . . . , an ∈ P . Since G is an up-set, it follows that e(ai) ∈ G for all i ∈ {1, . . . , n}.
Then, ai ∈ e−1[G] for all i ∈ {1, . . . , n}; which implies that e(ai) ∈ Fig(e[e−1[G]]) for
all i ∈ {1, . . . , n}. Hence, we have x = e(a1) ∧ · · · ∧ e(an) ∈ Fig(e[e−1[G]]). Therefore,
G = Fig(e[e−1[G]]).

We now consider the maps α : FiF(P ) → Fi(M) and β : Fi(M) → FiF(P ) defined as
follows:

α(F ) = Fig(e[F ]) and β(G) = e−1[G]
for every F ∈ FiF(P ) and for every G ∈ Fi(M), respectively.

Theorem 7.3 Let P be a meet-order distributive poset and M its free distributive meet-
semilattice extension. Then, the map α : FiF(P ) → Fi(M) establishes a lattice isomorphism
from the lattice of Frink filters of P onto the lattice of filters of M , whose inverse is the map
β : Fi(M) → FiF(P ).

Proof Let F1, F2 ∈ FiF(P ). Then, by Proposition 7.1, we have

F1 ⊆ F2 ⇐⇒ Fig(e[F1]) ⊆ Fig(e[F2]) ⇐⇒ α(F1) ⊆ α(F2).

Thus we obtain that α is an order-embedding. By Proposition 7.2, it is clear that α is an onto
map. Hence, α is an order isomorphism and therefore is a lattice isomorphism. Moreover,
from Propositions 7.1 and 7.2, we obtain that β is the inverse map of α.

8 Some Conclusions

We have shown that for every meet-order distributive poset there exists its free dis-
tributive meet-semilattice extension, see Theorem 6.5. In particular, if either P is a
finite meet-order distributive poset or a meet-order distributive join-semilattice, then
its distributive meet-semilattice extension M(P) is a distributive lattice (see Corollar-
ies 4.6 and 6.7, respectively). Thus, a Priestley-type duality may be developed for the
class of finite meet-order distributive posets or the class of meet-order distributive join-
semilattices. Similar results in the setting of distributive meet-semilattices can be found
in [1, 2].

The free distributive meet-semilattice extension M of a (finite) meet-order distributive
poset P could be used to study the equivalence relations θ∩P on P , where θ ∈ Con(M), as a
generalisation of the concept of congruences in Lattice Theory. For some studies concerning
equivalence relations on posets generalising the concept of congruence for lattices, we refer
the reader to [10, 15].
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