
Soft Comput (2018) 22:2797–2807
https://doi.org/10.1007/s00500-017-2750-0

FOUNDATIONS

The logic of distributive nearlattices

Luciano J. González1

Published online: 2 August 2017
© Springer-Verlag GmbH Germany 2017

Abstract In this paper, we propose a sentential logic nat-
urally associated, in the sense of Abstract Algebraic Logic,
with the variety of distributive nearlattices. We show that
the class of algebras canonically associated (in the sense of
Abstract Algebraic Logic) with this logic is the variety of
distributive nearlattices. We also present several properties
of this sentential logic.

Keywords Distributive nearlattices · Sentential logic ·
Gentzen system

1 Introduction

In this article, we define a Gentzen system through some
Gentzen-style rules and we consider the sentential logic
defined by this Gentzen system. Then, in the framework of
the general theory of Abstract Algebraic Logic, we show that
the algebraic counterparts of both this Gentzen system and
its sentential logic coincide with the variety of distributive
nearlattices.

Abstract Algebraic Logic (AAL) studies, in a completely
general and abstract way, relations between sentential logics
and algebraic semantics. One of the major achievements of
AALwas a development of a generalmethod bywhich a class
of algebras can be associated with every sentential logic; this
general method can be considered as the result of performing
the Lindenbaum–Tarski process suitably generalized, using
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the notion of generalized matrix. For each sentential logic,
the class of algebras defined by this method is considered in
AAL as its natural algebraic counterpart.

Font and Verdú (1991) studied (see also Font and Jansana
2009, Chapter 5) the relations between the {∧,∨}-fragment
of classical propositional logic and the variety of distribu-
tive lattices. They presented a Gentzen system adequate
for the {∧,∨}-fragment of classical proposition logic and
proved that the class of algebras naturally associated with
this Gentzen system is the variety of distributive lattices.
Then, Rebagliato and Verdú (1993) proved that this Gentzen
system is very close to the equational consequence relation
relative to the variety of distributive lattices; in other words,
they have proved that this Gentzen system is algebraizable
(Rebagliato and Verdú 1995; Font and Jansana 2009) with
equivalent algebraic semantics the variety of distributive lat-
tices. From these results, Font and Jansana (2009) found that
the canonical class of algebras naturally associated with the
{∧,∨}-fragment of classical propositional logic is the variety
of distributive lattices.

In Rebagliato andVerdú (1993) (see also Font and Jansana
2009, Chapter 5) proposed is a Gentzen system associated
with the variety of lattices. It is proved there that this Gentzen
system is algebraizable with equivalent algebraic semantics
the variety of lattices and its corresponding class of alge-
bras canonically associated is the variety of lattices. In Font
and Jansana (2009), it is proved that the canonical class of
algebras associated with the sentential logic defined by this
Gentzen system is the variety of lattices.

In the present paper, we use some of the strategies and
techniques developed in Font and Verdú (1991), Rebagliato
and Verdú (1993) and Font and Jansana (2009) to show that
the corresponding classes of algebras canonically associated
with both the proposed Gentzen system and its sentential
logic coincide with the variety of distributive nearlattices.
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The concept of (distributive) nearlattice is a generaliza-
tion of the notion of implication algebras. The variety of
implication algebras was introduced and studied by Abbott
(1967). This variety is the algebraic counterpart of the {→}-
fragment of classical propositional logic. An implication
algebra (Abbott 1967; Monteiro 1980, see also Abbott 1976;
Chajda and Halaš 2005; Chajda et al. 2001) is defined as
an algebra with only one binary connective such that satis-
fies some identities. Abbott (1967) showed that the class of
implication algebras can also be defined as the class of join-
semilattices with top element for which each principal upset
is a Boolean algebra. By weakening the condition that each
principal upset is a Boolean algebra to be a (distributive) lat-
tice, we come to the concept of (distributive) nearlattice. That
is, a (distributive) nearlattice is a join-semilattice such that
each principal upset is a (distributive) lattice. Nearlattices
were studied by many Cornish and Hickman (1978), Hick-
man (1980), Chajda et al. (2007), Chajda andKolařík (2008),
Celani and Calomino (2014), Celani and Calomino (2016),
Calomino (2015). The concept of (distributive) nearlattice
can be defined equivalently as those algebras with only one
ternary connective such that some identities hold (see Hick-
man 1980); hence, the class of (distributive) nearlattices is a
variety.

The paper is organized as follows. Section 2 is devoted
to introducing the concepts needed to follow the paper. In
Sect. 2.1, we present some notions of Abstract Algebraic
Logic; in Sect 2.2, we present the basic facts about nearlat-
tices. In Sect 3, we introduce a definition that will be useful
in what follows; we show a new characterization of the dis-
tributivity condition on nearlattice using this new definition.
The aim of Sect. 4 is to propose a Gentzen system defined
by means of a Gentzen calculus and then study the relations
between this Gentzen system, its associated sentential logic
and the variety of distributive nearlattices. In fact, we will
see that the variety of distributive nearlattices is the algebraic
counterpart, in the sense of AAL, of this Gentzen system and
of its associated sentential logic.

2 Preliminaries

Let X be a non-empty set. We write X0 ⊆∗
ω X to concisely

indicate that X0 is a non-empty finite subset of X .

2.1 Abstract Algebraic Logic

The aim of this part is to fix some terminology and notations
in AAL. For more detailed information about AAL, we refer
the reader to Czelakowski (2001), Font and Jansana (2009)
and Font et al. (2003).

Throughout thewhole article, we use the terminology sen-
tential logic as an abbreviation of finitary sentential logic
(also called deductive system in AAL).

Let L be an algebraic language and S = 〈Fm,�S〉 a
sentential logic. Let us denote by Th(S) the collection of all
theories of S (or S-theories for short).

Let S be a sentential logic. The Frege relation of S,
in symbols �(S), is the interderivability relation, that is,
(ϕ, ψ) ∈ �(S) if and only if ϕ �S ψ and ψ �S ϕ. The
Frege relation of a sentential logic is an equivalence relation,
but it is not necessarily a congruence on Fm. A sentential
logicS is said to be selfextensional if the Frege relation�(S)

is a congruence on Fm.
Let A be an algebra of the same similarity type as S. A

subset F ⊆ A is said to be an S-filter of A if and only if for
any�∪{ϕ} ⊆ Fm and any interpretation h ∈ Hom(Fm, A),

if � �S ϕ and h[�] ⊆ F then h(ϕ) ∈ F.

The set of all S-filters on a given algebra A is denoted by
FiS(A); this set is an algebraic closure system.The associated
closure operator will be denoted by FiAS .

Let Fm be the algebra of formulas of a given algebraic
similarity typeL. For our purpose, wewill consider a sequent
of type L to be a pair 〈�, ϕ〉 where � is a finite (possible
empty) set of formulas and ϕ is a formula. As usual, we
write � � ϕ instead of 〈�, ϕ〉. Let us denote by Seq(L) the
collection of all sequents, andwe consider the set Seqo(L) :=
{� � ϕ : � �= ∅}. A Gentzen-style rule is a pair 〈X, � � ϕ〉
where X is a (possible empty) finite set of sequents and� � ϕ

is a sequent. As usual, we shall use the standard fraction
notation for Gentzen-style rules:

�0 � ϕ0, . . . , �n−1 � ϕn−1

� � ϕ
(1)

A substitution instance of a Gentzen-style rule 〈X, � � ϕ〉
is a Gentzen-style rule of the form 〈σ [X ], σ [�] � σ(ϕ)〉 for
some substitution σ ∈ Hom(Fm, Fm) and where σ [X ] :=
{σ [�] � σ(ψ) : ��ψ ∈ X}. A Gentzen calculus is a set of
Gentzen-style rules. Given a Gentzen calculus G, the notion
of a formal proof can be defined as usual. That is, a proof in
the Gentzen calculus G from a set of sequents X is a finite
sequence of sequents each of which is a substitution instance
of a rule of G or a sequent in X or is obtained by applying
a substitution instance of a rule of G to previous elements
in the sequence. A sequent � � ϕ is derivable in G from
a set of sequents X if there is a proof in G from X whose
last sequent in the proof is � � ϕ. We express this writing
X |∼G� � ϕ.

Definition 2.1 A Gentzen system of type ω (resp. of type
ωo) is a pair G = 〈Fm, |∼G〉 where |∼G is a finitary clo-
sure operator on the set Seq(L) (resp. on the set Seqo(L))
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that is substitution-invariant and which satisfies the follow-
ing structural rules: for every � ∪ {ϕ,ψ} ⊆ Fm,

∅(Axiom)
ϕ � ϕ

� � ϕ
(Weakening)

�,ψ � ϕ

� � ϕ �, ϕ � ψ
(Cut)

� � ψ

Wesay that aGentzen systemG = 〈Fm, |∼G〉 has a Gentzen-
style rule of type (1) or that (1) is a Gentzen-style rule of G
if �0 � ϕ0, . . . , �n−1 � ϕn−1 |∼G� � ϕ and we say that a
sequent � � ϕ is a derivable sequent of G when ∅ |∼G� �
ϕ.

Let G be a Gentzen calculus with the structural rules of
(Axiom), (Weakening) and (Cut). Hence, G defines in a stan-
dardway theGentzen systemGG = 〈Fm, |∼G〉 (see Font and
Jansana 2009; Rebagliato and Verdú 1995).

For any Gentzen system G, we denote by Seq(G) either
Seq(L) if G is of type ω or Seqo(L) if G is of type ωo, and
we call sequents of G to the elements of Seq(G).

Definition 2.2 Let G be a Gentzen system. The sentential
logic defined by G is the logic SG = 〈Fm,�G〉 where the
consequence relation �G is defined as follows: for all � ∪
{ϕ} ⊆ Fm,

� �G ϕ ⇐⇒ there is a finite �0 ⊆ �

such that |∼G� � ϕ.

If S is a sentential logic, then we say that a Gentzen system
G is adequate for S when S is the logic defined by G, i.e.,
S = SG .

Nowwe are going to present algebraicmodels forGentzen
systems and sentential logics. Let L be a fixed but arbitrary
algebraic language. A generalized matrix, g-matrix for short,
of similarity type L is a pair 〈A, C〉 where A is an algebra of
type L and C is an algebraic closure system on A. We denote
byC the closure operator associatedwith C, andwewill often
identify the g-matrix 〈A, C〉 with the pair 〈A,C〉. Notice that
the closure operator C is finitary, i.e., for all X ∪ {a} ⊆
A, a ∈ C(X) implies that there is a finite X0 ⊆ X such
that a ∈ C(X0). The reader should be keep in mind that all
logics and g-matrices considered in this paper are finitary,
and thus, some general results of AAL are restricted to this
assumption.

One of the most interesting aspects of g-matrices is that
they can be used in a completely natural way as models of
sentential logics and as models of Gentzen systems. This
double function of g-matrices allows to relate the algebraic
theory of sentential logics to the algebraic theory of Gentzen
systems.

Definition 2.3 Let 〈A,C〉 be a g-matrix.

• 〈A,C〉 is a g-model of a sentential logic S when for all
� ∪ {ϕ} ⊆ Fm, if � �S ϕ, then h(ϕ) ∈ C(h[�]) for all
h ∈ Hom(Fm, A). Let us denote the class of all g-models
of a sentential logic S by GMod(S).

• 〈A,C〉 is a model of a Gentzen-style rule (1) when for all
h ∈ Hom(Fm, A), if h(ϕi ) ∈ C(h[�i ]) for all 0 ≤ i ≤
n − 1, then h(ϕ) ∈ C(h[�]).

• 〈A,C〉 is a model of a Gentzen system G when it is a
model of all Gentzen-style rules of G. The class of all
models of G is denoted by Mod(G).

Notice that if a g-matrix is a model of all Gentzen-style
rules of a Gentzen calculus, then it is a model of the Gentzen
system defined by this Gentzen calculus.

The Frege relation of a g-matrix 〈A,C〉 is defined by:

(a, b) ∈ �AC ⇐⇒ C(a) = C(b)

for every a, b ∈ A. The Tarski congruence of a g-matrix
〈A,C〉 is the largest congruence below the Frege relation of
the g-matrix. We denote the Tarski congruence of 〈A,C〉 by
˜	A(C). A g-matrix is said to be reduced when its Tarski
congruence is the identity relation.

Let us denote by GMod∗(S) the class of all reduced g-
models of a sentential logic S, and we denote by Mod∗(G)

the class of all reduced models of a Gentzen system G.
We can now introduce the classes of algebras that are con-

sidered in AAL as canonically associated with a sentential
logic and with a Gentzen system.

Definition 2.4 LetS be a sentential logic andG be aGentzen
system. The following classes of algebras are defined:

• Alg(S) := Alg(GMod∗(S)), class of the algebraic
reducts of the reduced g-models of S. These algebras
are called S-algebras.

• Alg(G) := Alg(Mod∗(G)), class of the algebraic reducts
of the reduced models of G. These algebras are called
G-algebras.

For a sentential logic S, the class Alg(S) is not necessar-
ily a variety. An important and useful variety of algebras
naturally associated with a sentential logic is defined by:
KS := V(Fm/˜	(S)) is the variety generated by the algebra
Fm/˜	(S); this variety is called the intrinsic variety of S.

Now we present some known relations between the pre-
vious classes of algebras.

Lemma 2.5 Let S be a sentential logic. Then, the intrinsic
variety of S is the variety generated by the class Alg(S), and
hence, we have Alg(S) ⊆ V(Alg(S)) = KS .
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Lemma 2.6 (Font and Jansana (2009), Lemma 4.9) Let G
be a Gentzen system and letSG be the sentential logic defined
by G. Then, every model of G is a g-model of SG , and hence,
Alg(G) ⊆ Alg(SG).

Definition 2.7 A g-matrix 〈A, C〉 is called a full g-model of
a logic S if and only if FiS(A/˜	AC) = {T/˜	AC : T ∈ C}.
We denote by FGMod(S) the class of all full g-models of S.

The notion of fully selfextensional logic has several useful
characterizations. We present this concept and its character-
izations in the next definition.

Definition 2.8 A sentential logic S is called fully selfexten-
sional if one (and all) of the following equivalent conditions
hold:

(1) the Frege relation of all full g-models of S is a congru-
ence;

(2) for every algebra A, the Frege relation of the g-matrix
〈A,FiS(A)〉 is a congruence on A;

(3) for every A ∈ Alg(S), the Frege relation of the g-matrix
〈A,FiS(A)〉 is the identity relation.

Definition 2.9 Let G be a Gentzen system and S a sentential
logic. We say that G is fully adequate for S when one of the
following two conditions holds:

(1) S has theorems, G is of type ω and FGMod(S) =
Mod(G).

(2) S does not have theorems, G is of type ωo and
FGMod(S) = {〈A,C〉 ∈ Mod(G) : 〈A,C〉 does
not have theorems}.

An equation of type L is a formal expression of the form
ϕ ≈ ψ for each ϕ,ψ ∈ Fm. The set of all equations will be
denoted by Eq(Fm). Let K be a class of algebras of the same
similarity type L. The equational consequence relative to K,
denoted by |�K, is defined as follows: if 
 ∪ {ϕ ≈ ψ} ⊆
Eq(Fm), then


 |�K ϕ ≈ ψ ⇐⇒ (∀A ∈ K)(∀h ∈ Hom(Fm, A))

(h(α) = h(β) for all α ≈ β ∈ 


implies h(ϕ) = h(ψ)).

2.2 Nearlattices

Here we introduce the main definitions and basic proper-
ties of nearlattices. Our main references for the theory of
nearlattices are Chajda et al. (2007), Araújo and Kinyon
(2011), Hickman (1980), and Calomino (2015). We address
the reader to these references for those concepts mentioned
in this paper that are not explicit introduced here. More-
over, we assume that the reader is familiar with elementary

order-theoretic notions (see, for instance, Davey and Priest-
ley 2002).

The notion of nearlattice can be presented in two different
and equivalentways. They can be defined as join-semilattices
that satisfy some property and can be defined as algebras
with only one ternary connective satisfying some identities.
The two different ways to consider nearlattices are useful for
different purposes.

Definition 2.10 An algebra 〈A, m〉 of type (3) is called a
nearlattice if the following identities hold:

(P1) m(x, y, x) = x ,
(P2) m(m(x, y, z), m(y, m(u, x, z), z), w) = m(w,w, m

(y, m(x, u, z), z)).

Theorem 2.11 (1) If 〈A, m〉 is a nearlattice, then the alge-
bra A∗ = 〈A,∨〉, where

x ∨ y := m(x, x, y), (J2)

is a join-semilattice such that for every a ∈ A the princi-
pal upset [a) = {b ∈ A : a ≤ b} is a lattice with respect
to the order induced by ∨.

(2) If 〈S,∨〉 is a join-semilattice such that every principal
upset is a lattice, then the algebra S∗ = 〈S, m〉 with

m(x, y, z) := (x ∨ z) ∧z (y ∨ z)

(where ∧z is the meet of x ∨ z and y ∨ z in [z)) is a
nearlattice.

(3) If A is a nearlattice and S is join-semilattice such that
every principal upset is a lattice, then (A∗)∗ = A and
(S∗)∗ = S.

This theorem show us that there is a one-to-one correspon-
dence between nearlattices and join-semilatticeswhere every
principal upset is a lattice. Hence, the join-semilattices where
all principal upsets are lattices can also be called nearlattices.
We will consider nearlattices as ternary algebras 〈A, m〉 sat-
isfying the identities (P1) and (P2), and we consider the join
operation ∨ on A defined as in (J2). Moreover, the partial
order ≤ on A is determined by ∨, i.e., x ≤ y if and only if
y = x ∨ y = m(x, x, y).

Let A be a nearlattice. For every element a ∈ A, we denote
the meet in [a) by ∧a . It should be noted that the meet x ∧ y
exists in A if and only if x, y have a common lower bound in
A. Thus, the meet of x and y in [a) coincides with their meet
in A for all x, y ∈ [a), i.e., x ∧a y = x ∧ y. This should be
kept in mind since we will use it without mention.

Definition 2.12 A nearlattice 〈A, m〉 is called distributive if
for every a ∈ A, the lattice 〈[a),∨,∧a〉 is distributive.
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Proposition 2.13 A nearlattice 〈A, m〉 is distributive if and
only if it satisfies either of the following (equivalent) identi-
ties:

(D1) m(x, y ∨ z, w) = m(x, y, w) ∨ m(x, z, w);
(D2) x ∨ m(y, z, w) = m(x ∨ y, x ∨ z, w).

We denote by DN the variety of all distributive near-
lattices. Let 2 = {0, 1} be the two-element distributive
nearlattice with 0 < 1. Then, it can be proved that DN is
the variety generated by 2, i.e., DN = V(2) (Chajda et al.
2007, Corollary 2.7.6).

Definition 2.14 Let 〈A, m〉 be a nearlattice. Let I, F ⊆ A
be non-empty.

(1) I is said to be an ideal of A if

(i) y ∈ I and x ≤ y implies x ∈ I ,
(ii) if x, y ∈ I , then x ∨ y ∈ I .

(2) F is said to be a filter of A if
(i) x ∈ F and x ≤ y implies y ∈ F ,
(ii) if x, y ∈ F and x ∧ y exists in A, then x ∧ y ∈ F .

Let us denote by Fi(A) the collection of all filters of a
nearlattice A. It is easy to check that for every nearlattice A
the intersection of any collection of filters is either a filter
or an empty set. So, for every non-empty X ⊆ A, there
exists the least filter containing X ; it is denoted by FiA(X).
If X = {a1, . . . , an}, then we write FiA(a1, . . . , an) instead
of FiA({a1, . . . , an}); and it easy to check that FiA(a) = [a).

A proper ideal I of A is called prime when for every
x, y ∈ A, if x ∧ y exists and x ∧ y ∈ I , then x ∈ I or y ∈ I .

Proposition 2.15 Let A be a nearlattice and F ⊆ A be non-
empty. Then, the following conditions are equivalent:

(1) F ∈ Fi(A);
(2) if a, b ∈ F, then m(a, b, c) ∈ F for all c ∈ A.

Proof (1) ⇒ (2) Let a, b ∈ F and c ∈ A. As F is an
upset, a ∨ c, b ∨ c ∈ F , and since F is closed under existing
meets, it follows that m(a, b, c) = (a ∨ c) ∧ (b ∨ c) ∈ F .
(2) ⇒ (1) Let a ∈ F and b ∈ A be such that a ≤ b.
So b = a ∨ b = m(a, a, b) ∈ F . Thus, F is an upset.
Let a, b ∈ F be such that a ∧ b exists. By condition
(2), we obtain that a ∧ b = m(a, b, a ∧ b) ∈ F . Hence,
F ∈ Fi(A). ��

3 Distributive nearlattices

The aim of this short section is to present a certain system of
elements on nearlattices; we state several properties and we

prove a new characterization of the distributivity condition
on nearlattices.

Definition 3.1 Let 〈A, m〉 be an algebra of type (3). For each
natural number n, we define inductively, for all a1, . . . , an,

b ∈ A, an element mn−1(a1, . . . , an, b) as follows:

• m0(a1, b) := m(a1, a1, b) and
• for n > 1,

mn−1(a1, . . . , an, b) := m(mn−2(a1, . . . , an−1, b), an, b).

In particular, for a nearlattice 〈A, m〉, we obtain that
m0(a1, b) = a1 ∨ b and m1(a1, a2, b) = m(a1, a2, b).

The following proposition follows directly by induction,
and thus, we omit its proof.

Proposition 3.2 Let 〈A, m A〉 and 〈B, m B〉 be algebras of
type (3) and let h ∈ Hom(A, B). Then,

h(mn−1
A (a1, . . . , an, b)) = mn−1

B (h(a1), . . . , h(an), h(b))

for all a1, . . . , an, b ∈ A.

Proposition 3.3 Let 〈A, m〉 be a nearlattice, and let a1, . . . ,
an+1, a, b ∈ A. Then,

(1) mn−1(a1, . . . , an, b) = (a1 ∨ b) ∧b · · · ∧b (an ∨ b);
(2) mn−1(a1, . . . , an, b) = mn−1(aσ(1), . . . , aσ(n), b) for

every permutation σ of {1, . . . , n};
(3) b ≤ mn−1(a1, . . . , an, b);
(4) a ≤ mn−1(a1, . . . , an, b) whenever a ≤ ai for all i ∈

{1, . . . , n};
(5) mn(a1, . . . , an+1, b) ≤ mn−1(a1, . . . , an, b).

Proof (1) We proceed by induction on n. If n = 1, then
m0(a1, b) = a1 ∨ b. We suppose that (1) is valid for n. Thus,
applying the inductive hypothesis we have

mn(a1, . . . , an+1, b) = m(mn−1(a1, . . . , an, b), an+1, b)

= m([(a1 ∨ b) ∧b · · · ∧b (an ∨ b)], an+1, b)

= ([(a1 ∨ b) ∧b · · · ∧b (an ∨ b)] ∨ b) ∧b (an+1 ∨ b)

= (a1 ∨ b) ∧b · · · ∧b (an ∨ b) ∧b (an+1 ∨ b).

Properties (2)–(5) are consequences of (1). ��
In view of property (2) of the previous proposition, if X

is a non-empty finite subset of A and b ∈ A, we denote by
m(X, b) the element mn−1(a1, . . . , an, b) where a1, . . . , an

is an arbitrary enumeration of X .
In the following proposition, we establish a new charac-

terization of the distributivity condition on a nearlattice.

Proposition 3.4 Let A be a nearlattice. Then, the following
conditions are equivalent:
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(1) A is distributive;
(2) for every X ⊆∗

ω A and b ∈ A,

b ∈ FiA(X) implies b ∈ FiA(m(X, b)).

Proof It should be noted, by property (3) of Proposition 3.3,
that b ∈ FiA(m(X, b)) if and only if b = m(X, b). (1) ⇒ (2)
We assume that A is a distributive nearlattice. Since A is
distributive, it follows that (see Calomino 2015, Lema 2.2.9)

FiA(X) = {a ∈ A : a = b1 ∧ · · · ∧ bk for some

b1, . . . , bk ∈ [X)}.

If b ∈ FiA(X), then there are b1, . . . , bk ∈ [X) such that
b = b1 ∧ · · · ∧ bk . Suppose, toward a contradiction, that
m(X, b) � b. Then, there exists a prime ideal P such that
b ∈ P and m(X, b) /∈ P (see Chajda et al. 2007, Corollary
2.7.8). On the one hand, since b = b1 ∧ · · · ∧ bk ∈ P and
P is a prime ideal, it follows that there is i ∈ {1, . . . , k}
such that bi ∈ P and then X ∩ P �= ∅. On the other hand,
given that m(X, b) /∈ P and b ∈ P , we have X ∩ P = ∅.
This is a contradiction. Then, m(X, b) ≤ b. Hence, b ∈
FiA(m(X, b)).

(2) ⇒ (1) Let a, b, c, d ∈ A. Let us prove that a ∨
m(b, c, d) = m(a ∨ b, a ∨ c, d). For this, first we show that
a∨m(b, c, d) ∈ FiA(b, c). Given that b∨d, c∨d ∈ FiA(b, c)
and moreover since (b ∨ d) ∧ (c ∨ d) exists, it follows that
m(b, c, d) ∈ FiA(b, c). Then, a ∨ m(b, c, d) ∈ FiA(b, c).
Thus, by (2), we obtain that

a ∨ m(b, c, d) = m(b, c, a ∨ m(b, c, d))

= (b ∨ a ∨ m(b, c, d)) ∧ (c ∨ a ∨ m(b, c, d)).

(2)

Now let us see thatb∨m(b, c, d) = b∨d and c∨m(b, c, d) =
c∨d. We show only one of these identities, and the other one
holds by an analogous argument. Since m(b, c, d) ≤ b ∨ d,
it follows that b ∨ m(b, c, d) ≤ b ∨ d. On the other hand,
given that b ≤ b ∨ m(b, c, d) and d ≤ m(b, c, d) ≤ b ∨
m(b, c, d), we have b ∨ d ≤ b ∨ m(b, c, d). We thus obtain
that b ∨ m(b, c, d) = b ∨ d. Hence, from (2) we obtain

a ∨ m(b, c, d) = (a ∨ b ∨ d) ∧ (a ∨ c ∨ d)

= m(a ∨ b, a ∨ c, d).

Therefore, A is distributive. ��
Remark 3.5 Let A be a distributive nearlattice and let X ⊆∗

ω

A and a ∈ A. Then, by Propositions 3.4 and 3.3, we have

a ∈ FiA(X) ⇐⇒ a = m(X, a).

4 A Gentzen system associated with DN

The main aim of this section is to propose a Gentzen sys-
tem GDN, defined by a Gentzen calculus, on the algebraic
language L = {m} such that Alg(GDN) = DN, the sen-
tential logic SDN := SGDN

be fully selfextensional and
Alg(SDN) = DN. To this end, it will be necessary to show
that GDN is algebraizable (in the sense of Rebagliato and
Verdú 1995, 1993) with equivalent algebraic semantics the
variety of distributive nearlattices and moreover that the
Gentzen system GDN is fully adequate for SDN.

Let L = {m} be an algebraic language of type (3).
All the algebras and sentential logics consider in this sec-
tion will be of the type L; for every algebra 〈A, m〉 of
type L, we also consider the binary operation ∨ defined by
a ∨ b := m(a, a, b). Moreover, for notational convenience,
we consider the following notations: a := (a1, . . . , an) and
m(a, b) := mn−1(a1, . . . , an, b).

Let us first note that the variety DN cannot be the equiv-
alent algebraic semantics of any algebraizable sentential
logic, in the sense of Blok and Pigozzi (1989). This result
is obtained by a very similar argument to Font and Verdú
(1991), Proposition 2.1, and thus, we omit its proof.

Proposition 4.1 Neither the variety of distributive near-
lattices DN nor the variety of nearlattices N can be the
equivalent algebraic semantics of any algebraizable senten-
tial logic.

Now we present the main definition of this section.

Definition 4.2 Let GDN = 〈Fm, |∼DN〉 be the Gentzen sys-
tem of type ωo defined by the following Gentzen-style rules:
the structural rules (Axiom), (Weakening) and (Cut) and the
following rules

ϕ � χ ψ � χ
(∨ �)

ϕ ∨ ψ � χ

� � ϕ
(� ∨)

� � ϕ ∨ ψ

� � ϕ

� � ψ ∨ ϕ

(m �)
m(ϕ, ψ, χ) � ϕ ∨ χ m(ϕ, ψ, χ) � ψ ∨ χ

� � ϕ ∨ χ � � ψ ∨ χ
(� m)

� � m(ϕ, ψ, χ)

ϕ1, . . . , ϕn � ϕ
(mn �)

mn−1(ϕ1, . . . , ϕn, ϕ) � ϕ

Let us denote by SDN = 〈Fm,�DN〉 the sentential logic
defined by GDN.
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The following proposition establishes two properties for
the sentential logic SDN. These results will be useful at the
end of this section.

Proposition 4.3 The sentential logic SDN has the following
properties:

(1) for every natural number n and ϕ1, . . . , ϕn, ϕ ∈ Fm, we
have that ϕ1, . . . , ϕn �DN mn−1(ϕ1, . . . , ϕn, ϕ);

(2) for every algebra A and F ∈ FiSDN
(A), if a1, . . . , an ∈

F, then mn−1(a1, . . . , an, a) ∈ F for all a ∈ A.

Proof (1) By definition, we have

ϕ1, . . . , ϕn �DN mn−1(ϕ1, . . . , ϕn, ϕ) ⇐⇒
⇐⇒ |∼DNϕ1, . . . , ϕn � mn−1(ϕ1, . . . , ϕn, ϕ).

We proceed by induction on n. If n = 1, it is straight-
forward by (Axiom) and applying the rule (� ∨), because
m0(ϕ1, ϕ) = ϕ1 ∨ ϕ. We suppose that the property is valid
for n, that is, |∼DNϕ1, . . . , ϕn � mn−1(ϕ1, . . . , ϕn, ϕ) and
it is proved for n + 1 by the following formal proof: let
� := {ϕ1, . . . , ϕn} and ϕ := (ϕ1, . . . , ϕn),

(I.H.)
� � m(ϕ, ϕ)

(W)
�, ϕn+1 � m(ϕ, ϕ)

(� ∨)
�, ϕn+1 � m(ϕ, ϕ) ∨ ϕ

(A)
ϕn+1 � ϕn+1

(� ∨)
ϕn+1 � ϕn+1 ∨ ϕ

(W)
�, ϕn+1 � ϕn+1 ∨ ϕ

(� m)
�, ϕn+1 � m(m(ϕ, ϕ), ϕn+1, ϕ)

Hence, property (1) holds for all natural numbers n. Property
(2) is an immediate consequence of (1). ��
Proposition 4.4 Let 〈A,C〉 be a g-matrix that is a model
of the Gentzen system GDN. Then, 〈A,C〉 has the following
properties: for all a, b, c ∈ A and a1, . . . , an ∈ A,

(WPD) C(a ∨ b) = C(a) ∩ C(b);

(PD1) C(a ∨ a) = C(a);
(PD2) C(a ∨ b) = C(b ∨ a);
(PD3) C(a ∨ (b ∨ c)) = C((a ∨ b) ∨ c);

(N1) a ∨ c, b ∨ c ∈ C(m(a, b, c));
(N2) a ∨ c, b ∨ c ∈ C(X) implies m(a, b, c) ∈ C(X), for

every non-empty finite X ⊆ A;
(N3) C(a ∨ c, b ∨ c) = C(m(a, b, c));
(N4) C(m(a, b, c)) ⊆ C(c);
(N5) C(mn−1(a1, . . . , an, b)) ⊆ C(b);
(N6) C(a1 ∨ b, . . . , an ∨ b) = C(mn−1(a1, . . . , an, b));
(N7) b ∈ C(a1, . . . , an) ⇐⇒ b ∈ C(m(a, b)).

Proof Property (WPD) is a consequence of the Gentzen-
style rules (∨ �) and (� ∨), and properties (PD1)–(PD3)
are consequences of (WPD). We also have that properties

(N1) and (N2) are immediate consequences of (m �) and
(� m), respectively. Then, (N3) follows from (N1) and (N2).

By (N3), we have that C(m(a, b, c)) = C(a ∨ c, b ∨ c) =
C(C(a ∨ c) ∪C(b ∨ c)). Then, since C(a ∨ c) ∪C(b ∨ c) ⊆
C(c), it follows that C(m(a, b, c)) ⊆ C(c), and hence, (N4)
holds. Property (N5) is a consequence of (N4) and because
mn−1(a1, . . . , an, b) = m(mn−2(a1, . . . , an−1, b), an, b).

We prove property (N6) by induction on n. If n =
1, then C(m0(a1, b)) = C(a1 ∨ b). Assume that the
property holds for n, that is, C(a1 ∨ b, . . . , an ∨ b) =
C(mn−1(a1, . . . , an, b)). Then, by inductive hypothesis and
properties (WPD), (N5) and (N3), we have

C(a1 ∨ b, . . . , an+1 ∨ b)

= C (C(a1 ∨ b, . . . , an ∨ b) ∪ C(an+1 ∨ b))

= C (C(m(a, b)) ∪ (C(an+1) ∩ C(b)))

= C ([C(m(a, b)) ∪ C(an+1)] ∩ C(m(a, b)) ∪ C(b)])
= C ([C(m(a, b)) ∪ C(an+1)] ∩ C(b))

= C(C(m(a, b) ∨ b) ∪ C(an+1 ∨ b))

= C(m(a, b) ∨ b, an+1 ∨ b)

= C(m(m(a, b), an+1, b))

= C(mn(a1, . . . , an, an+1, b)).

Hence, property (N6) holds.
Notice that the implication from left to right in (N7) is a

consequence of the Gentzen-style rule (mn �). On the other
hand, by (N6) and (WPD), we have

C(m(a, b)) = C ([C(a1) ∪ · · · ∪ C(an)] ∩ C(b))

⊆ C(a1, . . . , an).

Thus, if b ∈ C(m(a, b)), then we obtain b ∈ C(a1, . . . , an).
Hence, property (N7) holds. ��

The Gentzen-style rules (∨ �) and (� ∨) and their alge-
braic counterpart (WPD), as also the stronger and more
general versions of these, were studied inmanyworks related
to several sentential logics, for instance for the {∧,∨}-
fragment of classical logic, the logic of lattices (Font and
Jansana 2009; Font and Verdú 1991; Rebagliato and Verdú
1993) and for more general sentential logics (Czelakowski
2001).

Remark 4.5 The Gentzen-style rule (mn �) cannot be
deduced from the Gentzen-style rules (∨ �), (� ∨), (� m)

and (m �). Indeed, let A be any non-distributive nearlat-
tice and consider the g-matrix 〈A,Fi(A)〉. Since the filters
of A are upsets and closed under existing finite meets, and
since moreover for all a, b, c ∈ A we have m A(a, b, c) =
(a ∨c)∧c (b∨c), it follows that 〈A,Fi(A)〉 is a model for the
Gentzen-style rules (� ∨), (� m) and (m �). It is straight-
forward to check that FiA(a ∨ b) = FiA(a) ∩ FiA(b) for
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all a, b ∈ A and hence 〈A,Fi(A)〉 is a model for the g-rule
(∨ �). Since A is a non-distributive nearlattice, it follows by
Proposition 3.4 that the condition a ∈ FiA(a1, . . . , an) �⇒
a ∈ FiA(mn−1(a1, . . . , an, a)) is not true. Therefore, we
have proved that 〈A,Fi(A)〉 is a model of the Gentzen-style
rules (∨ �), (� ∨), (� m) and (m �), but not of (mn �).

Proposition 4.6 Let 〈A,C〉 be a g-matrix satisfying the
properties (WPD), (N1), (N2) and (N7). Then, we have
�AC ∈ ConDN(A). That is, A/�AC ∈ DN.

Proof Recall that �AC = {(a, b) ∈ A2 : C(a) = C(b)}. By
(WPD), it is easily checked that �AC is a congruence with
respect to ∨ (recall that the binary term ∨ is not a primitive
connective), i.e., if C(a1) = C(a2) and C(b1) = C(b2), then
C(a1∨b1) = C(a2∨b2). Nowweprove that�AC ∈ Con(A).
Let ai , bi , ci ∈ A with i = 1, 2 be such that C(a1) = C(a2),
C(b1) = C(b2) and C(c1) = C(c2). Then, by property (N3)
and since �AC is a congruence with respect to ∨, it follows
that

C(m(a1, b1, c1)) = C(a1 ∨ c1, b1 ∨ c1)

= C(C(a1 ∨ c1) ∪ C(b1 ∨ c1))

= C(C(a2 ∨ c2) ∪ C(b2 ∨ c2))

= C(m(a2, b2, c2)).

Now let us show that the algebra 〈A/�AC, m∗〉, with
m∗(a, b, c) := m(a, b, c), is a distributive nearlattice. By
properties (PD1)–(PD3), we have 〈A/�AC,∨∗〉 is a join-
semilattice with the order induced by: a ≤ b if and only
if a ∨∗ b = b if and only if C(b) ⊆ C(a). Now, by
property (N3), it follows that for every c ∈ A the upset
[c) = {a ∈ A/�AC : c ≤ a} is a lattice with respect to the
order induced by ∨∗ and where for all a, b ∈ [c), we have
a ∧c b = m∗(a, b, c). We thus obtain that 〈A/�AC, m∗〉 is
a nearlattice. Lastly, we need to show that A/�AC is dis-
tributive as nearlattice. Let a, b, c, d ∈ A. We prove that
a ∨∗ m∗(b, c, d) = m∗(a ∨∗ b, a ∨∗ c, d). That is, let us
to prove that C(a ∨ m(b, c, d)) = C(m(a ∨ b, a ∨ c, d)).
First, by (WPD) we have b ∨ d, c ∨ d ∈ C(b, c), and thus,
by (N2), we obtain that m(b, c, d) ∈ C(b, c). So, by (WPD)
again, a∨m(b, c, d) ∈ C(b, c). From this and using property
(N7), we have a ∨ m(b, c, d) ∈ C(m(b, c, a ∨ m(b, c, d))),
and then, by (N4), we can derive C(a ∨ m(b, c, d)) =
C(m(b, c, a ∨m(b, c, d))). Thus, by (N3) and (PD2)–(PD3),
we obtain that

C(a∨m(b, c, d)) = C(a∨b∨m(b, c, d), a∨c∨m(b, c, d)).

(3)

Let us see that C(b ∨ m(b, c, d)) = C(b ∨ d) and C(c ∨
m(b, c, d)) = C(c∨d). By (WPD) and (N3), we have C(b∨
m(b, c, d)) = C(b) ∩ C(b ∨ d, c ∨ d), and since b ∨ d, c ∨

d ∈ C(d), it follows that C(b ∨ d, c ∨ d) ⊆ C(d). Then,
C(b ∨ m(b, c, d)) ⊆ C(b) ∩ C(d) = C(b ∨ d). On the other
hand, since C(b ∨ d) ⊆ C(b ∨ d, c ∨ d) = C(m(b, c, d)),
it follows that C(b) ∩ C(b ∨ d) ⊆ C(b) ∩ C(m(b, c, d)) and
then C(b ∨ d) ⊆ C(b ∨ m(b, c, d)). Similarly we can show
that C(c ∨ m(b, c, d)) = C(c ∨ d). Now, from (3) we have
that

C(a ∨ m(b, c, d))

= C(a ∨ b ∨ m(b, c, d), a ∨ c ∨ m(b, c, d))

= C(C(a ∨ b ∨ m(b, c, d)) ∪ C(a ∨ c ∨ m(b, c, d)))

= C ([C(a) ∩ C(b ∨ m(b, c, d))]∪
∪ [C(a) ∩ C(c ∨ m(b, c, d))])

= C ([C(a) ∩ C(b ∨ d)] ∪ [C(a) ∩ C(c ∨ d)])
= C(a ∨ b ∨ d, a ∨ c ∨ d) = C(m(a ∨ b, a ∨ c, d)).

Hence, we have proved that 〈A/�AC, m∗〉 is a distributive
nearlattice, and therefore, �AC ∈ ConDN(A). ��
Theorem 4.7 Let A be an algebra of type L = {m}. Then, A
is the algebraic reduct of a reduced model of GDN if and only
if A is a distributive nearlattice. Therefore,Alg(GDN) = DN.

Proof First, assume thatA is the algebraic reduct of a reduced
model of GDN. So, there is a finitary closure operator C on A
such that 〈A,C〉 ∈ Mod∗(GDN). Then, by Propositions 4.4
and 4.6, we have�AC ∈ ConDN(A). Moreover, since 〈A,C〉
is reduced, it follows that �AC = ˜	AC = IdA, and hence,
A ∼= A/�AC ∈ DN.

Now we suppose that A is a distributive nearlattice
and we consider the g-matrix 〈A,Fi(A)〉. Let us see that
〈A,Fi(A)〉 ∈ Mod∗(GDN). Notice that is straightforward to
check directly that the g-matrix 〈A,Fi(A)〉 is reduced. By
Remark 4.5, we know that 〈A,Fi(A)〉 is a model of (∨ �),
(� ∨), (� m) and (m �) and by Proposition 3.4, it is model
of (mn �). Therefore, 〈A,Fi(A)〉 ∈ Mod∗(GDN) and thus
A ∈ Alg(GDN). ��

Nowwe are going to show that the Gentzen system GDN is
algebraizable with equivalent algebraic semantics the vari-
ety DN (see Theorem 4.10). The concept of algebraizability
is original on the framework of sentential logic and due to
Blok and Pigozzi (1989). The development of a theory of
the algebraization of Gentzen systems is parallel to that of
the algebraization of sentential logics and it was developed
in Rebagliato and Verdú (1995) (see also Font and Jansana
2009; Rebagliato and Verdú 1993).

For this purpose, we need the following lemma which
is similar to Proposition 3.8 in Rebagliato and Verdú
(1993). Let us denote by Th(GDN) the algebraic clo-
sure system associated with the closure operator |∼DN.

That is, T ∈ Th(GDN) if and only if T |∼DN� � ϕ

implies � � ϕ ∈ T . We also define ModDN(Fm) :=
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{C : 〈Fm,C〉 is a model of the Gentzen system GDN}. The
set Th(GDN) is ordered with the inclusion order and we con-
sider on ModDN(Fm) the usual order: C1 ≤ C2 ⇐⇒
C1(�) ⊆ C2(�) for all � ⊆ Fm.

Lemma 4.8 The sets Th(GDN) and ModDN(Fm), with the
corresponding orders, are order isomorphic via the following
maps:

• f : Th(GDN) → ModDN(Fm), where for every T ∈
Th(GDN), f (T ) = CT is defined by:

CT (�) = {ϕ ∈ Fm : �0 � ϕ ∈ T for some �0 ⊆∗
ω �}

CT (∅) =
⋂

ϕ∈Fm

CT (ϕ)

• g : ModDN(Fm) → Th(GDN), for every element C ∈
ModDN(Fm),

g(C) = TC = {� � ϕ ∈ Seq(GDN) : ϕ ∈ C(�)}.

Corollary 4.9 For every T ∈ Th(GDN), the relation θT :=
{(ϕ, ψ) ∈ Fm2 : ϕ � ψ,ψ � ϕ ∈ T } is such that θT ∈
ConDN(Fm).

Proof By the previous lemma, we have θT = {(ϕ, ψ) ∈
Fm2 : CT (ϕ) = CT (ψ)} = �(CT ), that is, θT is the
Frege relation of the g-matrix 〈Fm,CT 〉. As we know, by the
previous lemma, 〈Fm,CT 〉 is a model of GDN. Then, from
Propositions 4.4 and 4.6, we have that θT ∈ ConDN(Fm). ��

Now we consider the following translations which allow
us to prove that the Gentzen system GDN is algebraizable
with equivalent algebraic semantics the variety DN. Let
sq : Eq(Fm) → P(Seq(GDN)) be defined by sq(ϕ ≈ ψ) =
{ϕ � ψ,ψ � ϕ} and let tm : Seq(GDN) → P(Eq(Fm))

be defined by tm(� � ψ) = {m(ϕ, ψ) ≈ ψ}, where
ϕ = (ϕ1, . . . , ϕn) if � = {ϕ1, . . . , ϕn}. Moreover, sq and
tm are extended to subsets as usual: sq(E) = ⋃{sq(ϕ ≈
ψ) : ϕ ≈ ψ ∈ E} and tm(S) = ⋃{tm(� � ψ) : � � ψ ∈ S}
for all E ⊆ Eq(Fm) and S ⊆ Seq(GDN).

Theorem 4.10 Let {�i �ψi : i ∈ I }∪{��ψ} ⊆ Seq(GDN)

and ϕ ≈ ψ be an equation. Then,

(1) {�i � ψi : i ∈ I } |∼DN� � ψ ⇐⇒
⇐⇒ tm ({�i � ψi : i ∈ I }) |�DN tm(� � ψ);

(2) ϕ ≈ ψ |�DN tm (sq(ϕ ≈ ψ))and tm (sq(ϕ ≈ ψ)) |�DN

ϕ ≈ ψ .

Proof First, we denote by ϕi the sequence (ϕi1, . . . , ϕiki ) if
�i = {ϕi1, . . . , ϕiki } for every i ∈ I and by ϕ the sequence
(ϕ1, . . . , ϕn) if � = {ϕ1, . . . , ϕn}.

(1) We assume that {�i � ψi : i ∈ I } |∼DN� � ψ

and we prove that {m(ϕi , ψi ) ≈ ψi : i ∈ I } |�DN

m(ϕ, ψ) ≈ ψ . Let A ∈ DN and h ∈ Hom(Fm, A)

be such that h(m(ϕi , ψi )) = h(ψi ) for all i ∈ I . Since
h is a homomorphism, it follows by Proposition 3.2 that
m A(h[�i ], h(ψi )) = h(ψi ) for all i ∈ I . Then, by Remark
3.5, we have h(ψi ) ∈ FiA(h[�i ]) for every i ∈ I . Thus,
since 〈A,Fi(A)〉 is a reduced model of GDN, it follows that
h(ψ) ∈ FiA(h[�]). Hence, by Remark 3.5 again and the fact
that h is a homomorphism, we obtain h(m(ϕ, ψ)) = h(ψ).
Therefore, {m(ϕi , ψi ) ≈ ψi : i ∈ I } |�DN m(ϕ, ψ) ≈ ψ .

Now we assume that {m(ϕi , ψi ) ≈ ψi : i ∈ I } |�DN

m(ϕ, ψ) ≈ ψ . We consider the following element of
Th(GDN):

T := {� � χ ∈ Seq(GDN) : {�i � ψi : i ∈ I } |∼DN� � χ}.

By Corollary 4.9, we have Fm/θT ∈ DN. Let h : Fm →
Fm/θT be the canonical morphism, i.e., h(ψ) = ψ/θT , for
every ψ ∈ Fm. Since �i �ψi ∈ T , it follows by Lemma 4.8
thatψi ∈ CT (�i ) for every i ∈ I , and because 〈Fm,CT 〉 is a
model ofGDN, we obtain by (N7) of Proposition 4.4 thatψi ∈
CT (m(ϕi , ψi )) for every i ∈ I . Thusm(ϕi , ψi )�ψi ∈ T for
all i ∈ I . By (N5), we also have that m(ϕi , ψi ) ∈ CT (ψi )

and so ψi � m(ϕi , ψi ) ∈ T for all i ∈ I . Thus, we have
found that for all i ∈ I , m(ϕi , ψi ) � ψi , ψi � m(ϕi , ψi ) ∈
T . Hence, m(ϕi , ψi )/θT = ψi/θT for all i ∈ I , that is,
h(m(ϕi , ψi )) = h(ψi ) for all i ∈ I . Then, by hypothesis,
we have h(m(ϕ, ψ)) = h(ψ) and so m(ϕ, ψ)/θT = ψ/θT .
This implies that m(ϕ, ψ) � ψ,ψ � m(ϕ, ψ) ∈ T and thus
ψ ∈ CT (m(ϕ, ψ)). By (N7), we obtain ψ ∈ CT (�) and
hence � � ψ ∈ T . Then, by definition of T , {�i � ψi : i ∈
I } |∼DN� � ψ. Therefore, (1) holds.

(2) Notice that

tm(sq(ϕ ≈ ψ)) = tm({ϕ � ψ,ψ � ϕ})
= {m0(ϕ, ψ) ≈ ψ, m0(ψ, ϕ) ≈ ϕ}
= {ϕ ∨ ψ ≈ ψ,ψ ∨ ϕ ≈ ϕ}.

Then, it is straightforward to check directly that ϕ ≈ ψ |�DN

tm(sq(ϕ ≈ ψ)) and tm(sq(ϕ ≈ ψ)) |�DN ϕ ≈ ψ . This
completes the proof. ��
Corollary 4.11 (Font and Jansana 2009, Proposition 4.15)
Let {ϕi ≈ ψi : i ∈ I } ∪ {ϕ ≈ ψ} ⊆ Eq(Fm) and � � ϕ ∈
Seq(GDN). Then,

(3) {ϕi ≈ ψi : i ∈ I } |�DN ϕ ≈ ψ ⇐⇒
⇐⇒ sq({ϕi ≈ ψi : i ∈ I }) |∼DNsq(ϕ ≈ ψ);

(4) ��ϕ |∼DNsq(tm(��ϕ)) and sq(tm(��ϕ)) |∼DN��ϕ.

The following result is a consequence of the previous
corollary and Theorem 4.10. Moreover, its proof is similar
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to the proof of Proposition 4.18 in Font and Jansana (2009),
and thus, we leave the details to the reader.

Corollary 4.12 The sentential logic SDN is selfextensional
and the intrinsic variety of SDN is DN, i.e., KSDN

= DN.

Now we show that the Gentzen system GDN is fully ade-
quate for the sentential logic SDN. To this end, we use the
following useful characterization of the notion of full ade-
quacy.

Proposition 4.13 (Font and Jansana 2009, Proposition 4.12)
Let G be a Gentzen system and S be a sentential logic. Then,
G is fully adequate forS if and only if the following conditions
hold:

(1) Alg(S) = Alg(G);
(2) for every A ∈ Alg(S), the g-matrix 〈A,FiS(A)〉 is the

only reduced model of G (having no theorems, if S has
not) on A; and

(3) either S has theorems and G is of type ω, or S has no
theorem and G is of type ωo.

Theorem 4.14 The Gentzen system GDN is fully adequate
for SDN.

Proof Let us see that GDN and SDN satisfy the conditions
(1)–(3) of the previous proposition. Condition (3) is trivial.
By Lemma 2.6, we have Alg(GDN) ⊆ Alg(SDN) and from
Lemma 2.5 and Corollary 4.12, we obtain that Alg(SDN) ⊆
KSDN

= DN = Alg(GDN). Hence, Alg(SDN) = Alg(GDN),
and thus, condition (1) holds. In order to show (2), let
A ∈ Alg(SDN). So A ∈ Alg(GDN). Let 〈A, C〉 be any reduced
model (having no theorems) of GDN and where C denotes the
closure operator associated with C. By Propositions 4.4 and
4.6, we have �AC ∈ ConDN(A) and since 〈A, C〉 is reduced,
it follows that �AC = ˜	AC = IdA. Next, we prove that
C = FiSDN

(A). By Lemma 2.6, 〈A, C〉 is a g-model of SGDN

and thus C ⊆ FiSDN
(A). Let F ∈ FiSDN

(A). We only need
to prove that C(F) ⊆ F . If F = ∅, then C(F) = C(∅) = ∅,
because 〈A, C〉 has not theorems. Suppose that F �= ∅ and
let a ∈ C(F). Since C is finitary, there are a1, . . . , an ∈ F
such that a ∈ C(a1, . . . , an). From properties (N5) and
(N7), we obtain that C(a) = C(mn−1(a1, . . . , an, a)), and
from the fact that �AC = ˜	AC = IdA, we have a =
mn−1(a1, . . . , an, a). Now since F is an SDN-filter of A, it
follows by Proposition 4.3 that a = mn−1(a1, . . . , an, a) ∈
F . Then, F ∈ C, and hence, C = FiSDN

(A). Therefore, since
the three conditions of Proposition 4.13 hold, we obtain that
GDN is fully adequate for SDN. ��

In the following theorem, we establish some of the main
results of this paper.

Theorem 4.15 The sentential logic SDN has the following
properties:

(1) Alg(SDN) = DN;
(2) 〈A,C〉 ∈ FGMod(SDN) if and only if 〈A,C〉 does not

have theorems and satisfies (WPD), (N1), (N2) and
(N7);

(3) for every � = {ϕ1, . . . , ϕn} ⊆∗
ω Fm and ψ ∈ Fm,

� �DN ψ ⇐⇒ |�DN m(ϕ, ψ) ≈ ϕ ⇐⇒ |�2 m(ϕ, ψ) ≈ ϕ

ϕ = (ϕ1, . . . , ϕn);
(4) if A ∈ Alg(SDN), then FiSDN

(A) = Fi(A) ∪ {∅};
(5) SDN is fully selfextensional.

Proof (1) It is an immediate consequence from the previous
theorem and Theorem 4.7.

(2) It follows from Theorem 4.14, Definition 2.9 and
Proposition 4.4.

(3) By definition of the logicSDN and fromTheorem 4.10,
we have

� �DN ψ ⇐⇒ |∼DN� � ψ ⇐⇒ |�DN tm(� � ψ)

⇐⇒ |�DN m(ϕ, ψ) ≈ ψ ⇐⇒ |�2 m(ϕ, ψ) ≈ ψ.

(4)Let A ∈ Alg(SDN) = DN.Weknow (seeTheorem4.7)
that 〈A,Fi(A)∪{∅}〉 is a reduced model of GDN. Then, since
GDN is fully adequate for SDN, it follows by Proposition 4.13
that Fi(A) ∪ {∅} = FiSDN

(A).
(5) It follows from Definition 2.8 (1), condition (2) of this

theorem and by Proposition 4.6. ��
In view of the previous results, we can see that theGentzen

system GDN and its sentential logic SDN are naturally associ-
ated with the variety of distributive nearlattices DN. In fact,
we have that the variety DN is the algebraic counterpart of
both the sentential logic SDN and the Gentzen system GDN.
Thus, we think that the sentential logic SDN deserves to be
called the logic of distributive nearlattices.

Definition 4.16 A sentential logic S is called Fregean if for
any � ∈ Th(S), the relation �S(�) = {(ϕ, ψ) ∈ Fm2 :
�, ϕ �S ψ and �,ψ �S ϕ} is a congruence on Fm.

Next we prove that the logic SDN is Fregean. To this
end, we show first that SDN is complete with respect to
the two-element distributive nearlattice. For the two-element
distributive nearlattice 2 = {0, 1}, we can define the senten-
tial logic 〈Fm,�2〉 as usual: for every finite � ⊆ Fm and
ϕ ∈ Fm,

� �2 ϕ ⇐⇒ (∀h ∈ Hom(Fm, 2))

(h[�] ⊆ {1} �⇒ h(ϕ) = 1)
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and for all � ⊆ Fm, � �2 ϕ if and only if there is a finite
�0 ⊆ � such that �0 �2 ϕ.

Proposition 4.17 The logic SDN is complete with respect to
〈Fm,�2〉. That is, for every �∪{ψ} ⊆ Fm, � �DN ψ ⇐⇒
� �2 ψ .

Proof As the consequence relations �DN and �2 are finitary,
it is enough to show that � �DN ψ ⇐⇒ � �2 ψ when
� is finite and non-empty. Suppose first that � �DN ψ . So,
by (3) of Theorem 4.15, we have |�2 m(ϕ, ψ) ≈ ψ . Let
h ∈ Hom(Fm, 2) be such that h[�] ⊆ {1}. Then, we obtain
by Propositions 3.2 and 3.3 that h(ψ) = h(m(ϕ, ψ)) =
m(h[�], h(ψ)) = 1. Hence, � �2 ψ

Now assume that � �2 ψ and let h ∈ Hom(Fm, 2). By
Proposition 3.3, we have h(ψ) ≤ m(h[�], h(ψ)). Suppose
by contradiction that h(ψ) �= m(h[�], h(ψ)). Thus, h(ψ) =
0 and m(h[�], h(ψ)) = 1. Since

m(h[�], h(ψ)) =
∧

γ∈�

(h(γ ) ∨ h(ψ)),

it follows that h(γ )∨h(ψ) = 1 for allγ ∈ �. Then, h(γ ) = 1
for all γ ∈ �. Because � �2 ϕ, we obtain that h(ψ) = 1,
which is a contradiction. Hence, h(ψ) = m(h[�], h(ψ)),
and thus, |�2 m(ϕ, ψ) ≈ ψ . Therefore, � �DN ψ . ��

It is well known that all two-valued sentential logics are
Fregean (Font and Jansana 2009, p. 68). Hence, we have the
desired result:

Corollary 4.18 The sentential logic SDN is Fregean.

Weend this article by proving that the logicSDN is not pro-
toalgebraic and hence neither algebraizable. The proof fol-
lows the idea of the proof of Proposition 2.8 in Font andVerdú
(1991), where the authors show that the {∧,∨}-fragment of
the classical propositional logic is not protoalgebraic. The
notion of protoalgebraicity can be presented in several equiv-
alent forms, see, for instance, (Czelakowski 2001). We need
the following important tool in the theory of sentential logics.
For every algebra A, the Leibniz operator (Blok and Pigozzi
1989) is the map 	A : P(A) → P(A), which associates
with any F ⊆ A, the greatest congruence relation 	A F of
A which is compatible with F .

Proposition 4.19 The logic SDN is not protoalgebraic.

Proof In order to prove this, we use the following char-
acterization of protoalgebraility: a sentential logic S is
protoalgebraic if and only if for every algebra A, the Leib-
niz operator 	A is monotonic over the set FiS(A). Now
we consider the two-element distributive nearlattice 2. So
2 ∈ Alg(SDN) and thenFiSDN

(2) = Fi(2)∪{∅} = {∅, {1}, 2}.

Since Con(2) = {�2,∇2}, it easily follows by the definition
of the Leibniz operator	A that	A∅ = ∇2,	A{1} = �2 and
	A2 = ∇2. Thus, we have that ∅ ⊆ {1} but 	A∅ � 	A{1}.
Hence, SDN is not protoalgebraic. ��
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