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ABSTRACT. The main aim of this article is to develop a categorical du-
ality between the category of semilattices with homomorphisms and a
category of certain topological spaces with certain morphisms. The prin-
cipal tool to achieve this goal is the notion of irreducible filter. Then, we
apply this dual equivalence to obtain a topological duality for the cate-
gory of bounded lattices and lattice homomorphism. We show that our
topological dualities for semilattices and lattices are natural generaliza-
tions of the duality developed by Stone for distributive lattices through
spectral spaces. Finally, we obtain directly the categorical equivalence
between our topological spaces and those presented for Moshier and
Jipsen (Topological duality and lattice expansions, I: A topological con-
struction of canonical extensions. Algebra Univers. 71 (2014), 109—
126.).

1. INTRODUCTION

The categorical dualities for ordered algebraic structures through topo-
logical spaces arose with the famous work of M. H. Stone [22] developing
a categorical duality between the category of Boolean algebras with homo-
morphisms and the category of compact Hausdorff zero-dimensional spaces
(called Boolean spaces or Stone spaces) with continuous functions. Then,
Stone himself extended this duality from Boolean algebras to bounded dis-
tributive lattices through spectral spaces and spectral functions ([13]). Some
time later, Priestley developed another topological duality from a different
approach for the category of distributive lattices employing compact totally
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order-disconnected spaces (called Priestley spaces) with continuous mono-
tone functions.

Both topological dualities for distributive lattices are very useful for the
study of distributive lattices and they are also a powerful mathematical
tool in the study of many non-classical logics having an algebraic semantics
based on distributive lattices (see for instance [19, 11]). From there, many
generalizations of the topological dualities for distributive lattices following
the Stone’s approach or the Priestley’s approach were obtained for several
ordered algebraic structures having an adequate distributivity condition [11,
9,2, 3,12, 1,5, 7, 14, 6].

There are in the literature several categorical dualities for the category of
arbitrary bounded lattices following the ideas of Stone or Priestley [23, 17,
16]. It is fair to say that these topological dualities are closer to the Priest-
ley’s duality than the Stone one because the topological spaces obtained in
[23, 17, 16] are equipped with some additional structure.

Recently, in [20] Moshier and Jipsen developed a topological duality for
the category of bounded lattices following an approach different from Stone
and Priestley. Their duality is closely related to the concept of canonical
extension. But, it has the disadvantage that the dual object of a distribu-
tive lattice is neither the dual Stone space nor the dual Priestley space of
the distributive lattice. Thus, the duality given by Moshier and Jipsen is
neither a generalization of the Stone duality nor of the Priestley duality for
distributive lattices. Even in the Boolean case is not a generalization.

Our purpose in this paper is to develop a topological duality for the
category of semilattices (lattices) such that the dual objects are topological
spaces with no additional structure and in such a way that when restricted to
the full subcategory of distributive lattices coincides with the Stone duality.

The paper is organized as follows. In Section 2, we present several notions
and results needed for what follows in the paper. In Section 3, we introduce
the notion of S-space, and we establish the topological duality between the
category of semilattices and homomorphisms and the category of S-spaces
and meet-relations. Then, we apply this duality to obtain a categorical
duality between the category of lattices and homomorphism and the category
of L-spaces and L-relations. In Section 4, we show that our topological
duality for semilattices (and thus also for lattices) is a generalization of
the topological duality developed by Stone for the category of distributive
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lattices. We also characterize the spectral spaces through the concept of S-
space. Finally, in Section 5, we develop directly the categorical equivalence
between the category of S-spaces and meet-relations and the category of
HMS spaces and F-continuous functions. The HMS spaces are the dual
spaces of the semilattices used by Moshier and Jipsen in their topological
duality for semilattices.

2. PRELIMINARIES

In this section, we will introduce some definitions and notations. Let X
be a set. Let P(X) be the powerset of X. For a subset Y of X, we shall
denote the complement of Y with respect to X by X \ Y or simply by Y.

Our main references for Order and Lattice Theory are [8, 15]. Let (L, <)
be a poset. A subset U C L is said to be an upset of L if for all a,b € L
such that a € U and a < b, we have b € U. Dually, we have the notion of
downset.

A meet-semilattice with a greatest element is an algebra (L, A, 1) of type
(2,0) such that the operation A is idempotent, commutative and associative,
and a A1l =a, for all a € L. As usual, the partial order < associated with A
is defined on L as follows: a < b if and only if a Ab = a. In what follows, for
brevity, by semilattice we mean a meet-semilattice with a greatest element.
A bounded semilattice is an algebra (L, A,0,1) of type (2,0,0) such that
(L,A,1) is a semilattice and a A0 =0 for all a € L.

A nonempty subset F' of a semilattice L is said to be a filter if F' is an
upset, and a,b € F implies a A b € F. We denote by Fi(L) the collection of
all filters of L. It is well known that Fi(L) is an algebraic closure system.
If we denote by Fig(.) the closure operator associated with Fi(L), it is also
known that the filter generated by a subset H C L can be characterized as

Fig(H) ={a€ L:3{h1,...,hy} CHst. hy A---ANh, <a}.

A proper filter P of L is called irreducible when for all Fy, Fy € Fi(L), if
P =I1NF,, then P = F; or P = F5. The set of all irreducible filters of L
will be denoted by X(L).

A nonempty subset I of a semilattice L is said to be an order-ideal if it

is a downset and, for all a,b € I, there exists ¢ € I such that a,b < c.

Theorem 2.1 ([2]). Let L be a semilattice. Let F € Fi(L) and I an order-
ideal of L. If FN I =0, then there exists P € X(L) such that F C P and
PNI=0.
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Corollary 2.2. Let L be a semilattice. Then every proper filter is the in-

tersection of irreducible filters.

The following lemma is a useful characterization of irreducible filters. It

will be important to develop our duality.

Lemma 2.3 ([2]). Let L be a semilattice and let F € Fi(L). Then, F is
irreducible if and only if for every a,b ¢ F there exist c ¢ F and f € F such
that a N f <candbA f <ec.

The following definition arises from the previous lemma.

Definition 2.4. Let L be a semilattice and F' € Fi(L). A subset I of L is
said to be an F-ideal if it is a downset, and for all a,b € I, there exist c €
and f € F'such that a A f <cand bA f <ec.

Thus, the previous lemma claims that a filter F' is irreducible if and only

if F¢is an F-ideal. The following theorem will be crucial for what follows.

Theorem 2.5. Let L be a semilattice. Let F € Fi(L), and let I be an
F-ideal. If FN I =, then there exists P € X(L) such that F C P and
PNI=40.

Proof. Let us consider the family
F={HeFi(L): FCHand HNI=0}.

We note that F # () because F' € F. By the Zorn’s lemma, there exists a
maximal element P of F. We prove that P is irreducible. Let Fi, F5 € Fi(L)
be such that P = F; N Fy. Suppose that P # F; and P # Fy. Then
F1,Fy ¢ F. Thus Fi N1 # () and F, N1 # (). So, there exist a € F; NI and
be FbNI. Asa,b e I and [ is an F-ideal downset, there exist f € F and
c€lsuchthat aAf<candbAf<c Asfe FCP, weget feFNFk.
So, a AN f e Fyand bA f € Fy. It follows that ¢ € Fy N Fs, which is an
absurd. Hence, P = F} or P = F5. O O

We close this section introducing some topological concepts. We assume
that the reader is familiar with basic topological notions. We refer the reader
to [10].

Let (X, 7T) be a topological space. We denote the collection of all closed
subsets of X by C(X), and for every Y C X, cl(Y') denotes the topological

closure of Y. The specialization order of X is the binary relation C defined
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as follows: for all z,y € X,
zCy <= YWert(xelU = yelU) < z € cly).

It is clear that X is a Ty-space if and only if C is a partial order.

A closed subset Y of X is said to be irreducible if Y C A U B with
A,BeC(X),thenY C Aor Y C B. A topological space X is called sober
if it is Tp and, for every irreducible closed subset A, there is an element
x € X such that Y = cl(x).

Lemma 2.6 ([21, 1.3.1]). A topological space (X, 1) is sober if and only if
it is Ty and for every completely prime filter F of the lattice of open subsets
of X, there is x € X such that F =N(z) ={U € 7:x € U}.

3. TOPOLOGICAL DUALITIES

3.1. S-spaces. Let X be a nonempty set and let  C P(X). Let us denote
by 7x the topology on X generated by K. In other words, 7 is the smallest
topology on X such that K C 7. It is well known that 7 consists of
(), X, all finite intersections of K, and all arbitrary unions of these finite
intersections. The collection K is called a subbase for 7. We shall say
simply that (X, K) is a topological space, meaning that K is a subbase for
the smallest topology 7 on X such that K C 7.

Let (X, K) be topological space. We consider the following collection of
subsets of X:

S(X)={U°:U € K}.
Let Cxc(X) be the closure system on X generated by S(X). Thus Cx(X) =
{NA: ACS(X)}. We denote by clg the closure operator associated with
Cic(X); that is,
ce(Y) = {Ae€S(X):Y C A},

for all Y C X. The elements of Cx:(X) will be called subbasic closed subsets
of X. Notice that S(X) C Cx(X) C C(X).

Lemma 3.1. Let (X,K) be a topological space. Then,

(1) for every Y C X, cl(Y) Ccl(Y);
(2) cl(z) = clg(x), for allx € X.

Proof. Property (1) is clear because Ci(X) C C(X). Property (2) follows
from the fact that K is a subbase for the topology 7. 0 ([l
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Let (X, K) be a topological space such that the subbase K is closed under
finite unions and ) € K. Then (S(X),N, X) is a semilattice, and it will
be called the dual semilattice of (X,KC). Now we establish a relationship
between the subbasic closed subsets of a topological space (X, ) and the
filters of the semilattice S(X).

Proposition 3.2. Let (X, K) be a topological space such that K is a subbase
of compact open subsets, and it is closed under finite unions and O € K.
Then,

1) for every Y € Cx(X), Fy :={A € S(X):Y C A} € Fi(S(X));

2) for every F € Fi(S(X)), Yr = F € Cx(X);

3) if Y1,Y2 € Ck(X) and Y1 CYs, then Fy, C Fy,;

4) if i, e FI(S(X)) and Fy C F5, then YF2 - YFl ;

5) Y =Yg, forallY € Cx(X);

6) F' = Fy,, for all F € Fi(S(X)).

Hence, the posets Cx(X) and Fi(S(X)), both ordered by the set theoretic
inclusion, are dually isomorphic.

(
(
(
(
(
(

Proof. By the definition of Cx:(X), Fy and Yr, it is straightforward to show
directly that properties (1)-(5) hold. We prove property (6). Let F €
Fi(S(X)). We need to show that FF = {A € S(X) : | F C A}. It is clear
that F C {A € S(X):NF C A}. Now let A € S(X) be such that (| F C A.
So A¢ C | J{B¢: B € F}. Notice that A°, B¢ € K for all B®. Since A € K
is compact, there are By,..., B, € F such that A° C B{U---U Bf;. Thus
Bin---NB, C A, and since F is a filter of S(X), it follows that A € F.
Then, {A € S(X):(F C A} CF. Hence F' = Fy,. O O

Definition 3.3. Let (X, K) be a topological space. Let Y C X. We will
say that a family Z C S(X) is a Y-family if for all A, B € Z, there exist
H,CeS(X)suchthat Y CH,Ce Z, ANHCCand BNH CC.

Proposition 3.4. Let (X, K) be a topological space such that K is a subbase
of compact open subsets, and it is closed under finite unions and ) € KC. Let
Y € C(X). Then, a downset Z C S(X) is a Y-family if and only if it is
an Fy-ideal of S(X).

Definition 3.5. An S-space is a topological space (X, ) satisfying the
following:

(S1) (X,K) is a Tp-space and X = JK;
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(S2) K is a subbase of compact open subsets, it is closed under finite unions
and 0 € K;

(S3) For all U,V € K, if z € U NV, then there exist W, D € K such that
x¢W,xeDand DC(UNV)UW.

(S4) f Y € Ci(X) and Z C S(X) is a Y-family such that Y N A¢ # ), for
all Ae Z then YNN{A°: A e Z} # 0.

Remark 3.6. Let (X, ) be a Ti-space. Then, condition (S3) follows from
condition (S2). Indeed, let U,V € K and x € X be such that x € UNV. Let
D € K be such that € D (for instance, D := U). Since X is a T}-space,
we have that {z} is a closed subset of X. Then, by Lemma 3.1, we obtain
that {z} = cl(z) = clg(z) = ({A € S(X) : z € A}. Thus

(g} = J{Uek:2¢ U}
Hence, for every y € D\ {z}, there is U, € K such that y € Uy, and = ¢ U,,.
Then, D\ {z} € U{Uy : y € D\ {z}}. We obtain that D C (J{U, : y €
D\ {z}}u (U NnV). Since D € K is compact, it follows that there are
Yi,--->Yn € D\ {x} such that D C (U, U---UU,,)u(UNV). By (52), we
have that W :=U,, U---UU,, € K. Then D C (UNV)UW and =z ¢ W.
Hence (S3) holds.

Given a space (X, K) satisfying (S2), recall that X(S(X)) denotes the
collection of all irreducible filters of the semilattice (S(X), N, X).

Lemma 3.7. Let (X,K) be a topological space satisfying conditions (S1)-
(S3). Then, for every x € X, we have {A € S(X) : x € A} € X(S(X)).

Proof. Let x € X. We denote Hx (z) := {4 € S(X) : z € A}. Tt is clear that
Hx(z) is a filter of S(X). Since X = JK, we have Hx(x) # S(X). Thus,
Hx (x) is a proper filter of S(X). Now we show that Hx (x) is irreducible. Let
us use Lemma 2.3. Let A, B ¢ Hx(x). Thus z € A°NB¢and A¢, B¢ € K. By
(S3), there exist W, D € K such that ¢ W,z € D and D C (A°NB)UW.
Then, there are W€ D¢ € S(X) such that D¢ ¢ Hx(x), W¢ € Hx(z),
WenA C D¢ and Wen B C D¢ Hence, by Lemma 2.3, we obtain that
Hx (z) is an irreducible filter of S(X). O

In the next result, we obtain an equivalent condition to condition (S4).

This will be useful for what follows.

Proposition 3.8. Let (X,K) be a topological space satisfying conditions
(S1)-(S3). Then, the following are equivalent.
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(1) The space (X,K) satisfies condition (S4).
(2) The map Hx: X — X(S(X)) defined by

Hx(z)={AeS(X):x € A}, for eachz € X,

15 onto.

Proof. By Lemma 3.7, we have that Hx is well defined.

(1) = (2) Let P € X(S(X)). Consider the set Y = ({4 : A€ P}. It
is clear that Y € Cx(X). Consider the family Z = {B € S(X) : B ¢ P}.
As P is an irreducible filter of S(X), it is straightforward to check that Z
is a Y-family. We prove that Y N B¢ # (), for all B € Z. If there exists
B € Z such that Y C B, we have that B¢ C [J{A°: A € P}, and since
B¢ € K is compact, it follows that there exist Ay,..., A, € P such that
AinN---NA, C B. As P is a filter, we obtain that B € P, which is
impossible. Thus, Y N B¢ # (), for all B € Z.

Then, by condition (S4), we have YN({B¢: B € Z} # (). So there exists
x e YN{B°: B € Z}, which implies that P = Hx(x).

(2) = (1) Let Y € Cx(X) and Z C S(X) be a Y-family such that YNB¢ #
(), for all B € Z. We need to prove that Y N(\{B° : B € Z} # (. By
Proposition 3.2, we have that Fy = {A € S(X) : Y C A} € Fi(S(X)) and
N Fy =Y. Now let (Z] ={A € S(X): AC B, for some B € Z}. Since Z
is a Y-family, it follows that (Z] is also a Y-family. By Proposition 3.4, we
have that (Z] is Fy-ideal. Now let us show that Fy N (Z] = (). Suppose it
is not. Thus there is A € Fy and C € Z such that A C C. Then, Y C C.
This is a contradiction because Y N B¢ # () for all B € Z. Now, since
Fy N (Z] = 0, it follows by Theorem 2.5 that there is P € X(S(X)) such
that Fy C P and PN(Z] = 0. By (2), there is x € X such that Hx(z) = P.
Then, since Fy C Hx(x) and (Z] N Hx(x) = (), we have that € Y and
x € B¢ for all B € Z. Hence Y N[ {B¢: B € Z} # (. Therefore, we have
proved that the space (X, K) satisfies condition (S4). O O

3.2. Representation for semilattices. Let (L, A, 1) be a semilattice. Re-
call that X(L) denotes the collection of all irreducible filters of L. We define
the map o: L — P(X(L)) as follows: o(a) = {P € X(L) : a € P}, for
all a € L. Let K = {o(a)® : a € L}. Notice that for every a € L,
o(a)¢ =X(L)\o(a) ={P € X(L) : a ¢ P}. It is straightforward to show
that, for all a,b € L, o(aAb) = o(a)No(b), and o(1) = X(L). Moreover, by
Theorem 2.1, we have that a < b if and only if o(a) C o(b), for all a,b € L.
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We consider the topological space X (L) = (X(L), Kr), which will be called
the dual S-space of L. Notice that S(X(L)) = {o(a) : @ € L}. Hence, we
have the following result, which is straightforward.

Proposition 3.9. Let (L, A, 1) be a semilattice. Then X(L) = (X(L),Kr)
is a topological space such that K is a subbase closed under finite unions,
and O € Kr. Moreover, the map o: L — S(X(L)) is an isomorphism of
semilattices.

Proposition 3.10. Let (L, A, 1) be a semilattice. Then, the topological space
(X(L),KpL) is an S-space.

Proof. 1t is clear that (X(L),Kr) is a Tp-space. Moreover, since every ir-
reducible filter F' € X(L) is proper, it follows that X(L) = |JKr. Hence,
(X(L),Kr) satisfies condition (S1).

By the previous proposition, we know that K is closed under finite
unions, and () € Kr. Let a € L. Assume that o(a)® C [y o(b) for some
B C L. So(\yepgo(b) Co(a). Let F:=Figy(B). If a ¢ F, then by Theorem
2.1 there is P € X(L) such that FF C P and a ¢ P. Thus P € (),cgo(b)
and P ¢ o(a), which is a contradiction. Hence a € F. Then, there exist
bi,...,b, € F such that by A---Ab, < a. Hence o(b1)N...0o(b,) C o(a), and
thus o(a)¢ C o(b1)°U---Uo(b,)¢. We have proved that any cover of o(a)¢
by elements of I, has a finite subcover. Then, since Ky, is a subbase for the
space (X(L),Kr), it follows by the Alexander subbase Lemma that o(a)¢
is compact. Therefore, the topological space (X(L),Kr) satisfies condition
(S2).

Condition (S3) follows from Lemma 2.3.

Finally, we prove that condition (S4) holds. Let Y € Cx, (X(L)) and let
Z C S(X(L)) be a Y-family such that Y No(a)® # 0, for all o(a) € Z.
Suppose, towards a contradiction, that Y N({o(a)®: o(a) € Z} = (. Since
Y € Cx, (X(L)) it follows from Propositions 3.2 and 3.9, that F' = o~ ![Fy]
is a filter of L. Since Z is a Y-family of S(X(L)), it follows that (Z] =
{o(b) € S(X(L)) : o(b) C o(a) for some o(a) € Z} is an F-ideal downset of
S(X(L). Thus, I ={be L:o(b) € (2]} is an F-ideal downset of L. Now,
if INF # 0, then there is a € L such that o(a) € Z and o(a) € Fy; thus
Y No(a)® = 0 with o(a) € Z, which is a contradiction. Hence, we have
FNI={(. By Theorem 2.5, there exists P € X(L) such that F C P and
PN I =1{. Then, since Y = Fy, it follows that P € Y. Since PN I = 0,
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we obtain that P € o(a)¢, for all a € I. Thus P € o(a)¢, for all o(a) € Z.
Hence P € Y N({o(a)¢: o(a) € Z}. This completes the proof. O O

Theorem 3.11 (Topological representation). Every semilattice L is iso-
morphic to the dual semilattice S(X) of an S-space (X, K).

Let (X, ) be an S-space and consider its dual semilattice (S(X),N, X).
Now we consider the dual S-space X(S(X)) = (X(S(X)), Ks(x)) of the semi-
lattice S(X). Recall that Hx: X — X(S(X)) is the map defined by

Hx(zx)={AeS(X):xze€ A}
for all x € X (see Lemma 3.7).

Proposition 3.12. Hx: X — X(S(X)) is a homeomorphism between the S-
spaces (X, K) and (X(S5(X)), Kg(x)). Moreover Kg(x) = {Hx[U]: U € K}.

Proof. We prove the theorem in several steps.

e Hx is onto. It follows from Proposition 3.8.

e Hx is one-to-one. Let z,y € X and suppose that Hx(z) = Hx(y).
Notice that Hx(r) = {A € S(X) : clc(v) € A} = Fy (o). Thus Fy(p) =
Fy,.(y) and, by Proposition 3.2, it follows that clic(z) = clx(y). Since X is
a Ty-space, it follows that x = y.

e Hx is a continuous map. Notice that Kgx) = {0(A4)°: A € S(X)}
where 0(A)° ={P € X(S(X)): A¢ P}. Let A€ S(X) and = € X. Then,
(3.1)

x € Hy'[o(A)] <= Hx(v) € 0(A) <= A¢ Hx(z) <= x € A"

Thus Hy'[0(A)°] = A° € K. Then, Hy is continuous. By (3.1), we also have
proved that Hx is an open map because H)_(1 is a bijection between subbasic

open subsets. Hence Hx is a homeomorphism. Moreover, from (3.1) we
obtain that Kg(x)y = {Hx[U]: U € K}. This completes the proof. [ [

Corollary 3.13. Let L be a semilattice and (X,KC) an S-space. Then
X(L) = (X(L),Kr) is an S-space, S(X) = (S(X),N,X) is a semilattice,
and L =2 S(X(L)) and X =2 X(S(X)).

3.3. Duality for semilattices. Our aim here is to extend the representa-
tion of semilattices through S-spaces to a full categorical duality. To this
end, we need to specify which are the morphisms between two objects in the
respective categories. For semilattices, the morphisms will be the natural
ones. Let us denote by MS the category of semilattices and homomorphisms

(that is, maps preserving meets and top element).
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Now, the morphisms for S-spaces should be the corresponding ones to the
homomorphisms. We shall consider the notion of meet-relation introduced
in [2, 4] (in [1] the authors considered the same notion of meet-relation to
develop a duality for the category of distributive semilattices). We need
to introduce some notations. Let R C X; x X3 be a relation. For every
v € Xy, R(x) ={y € Xa: (x,y) € R}. Forevery y € Xo, R"(y) = {x €
X1 : (x,y) € R}. Let Ogr: P(X2) — P(X1) be the map defined as follows:
for all B C Xo,

Or(B) ={z € X; : R(z) C B}.

Definition 3.14. Let (X;,K;) and (X2, K2) be S-spaces. A relation R C
X7 x X9 is said to be a meet-relation if:

(R1) For all B € S(X3), Or(B) € S(X1).

(R2) For every x € X1, R(x) € Ci,(X2).

Our definition of meet-relation is slightly different from the one given in
[4]. Here we use subbases I of compact opens, while in [4] the authors
work with the collection of all compact opens (which form a base for their
topology). Despite this slight difference, all the results about meet-relations
given in [4] are still valid here. Even more, the proofs presented in [4] can
be performed exactly in the same way here. Thus, we shall omit most of
these proofs and refer the reader to [4] (see also [2, 1]).

Definition 3.15. Let (X;,K;), with ¢ = 1,2,3, be S-spaces, and let R C
X1 x Xo and T C Xy X X3 be meet-relations. The composition between
R and T is defined by the relation T« R C X7 x X3 as follows: for every
r € X; and z € X3,

(r,2) eT+*R <— (VD e S(X3))((ToR)(x) CD = z€D)
where T o R is the usual set-theoretical composition.

Notice that for every z € X1,
(T'x R)(z) = cliy (T'o R)(x)) .

Proposition 3.16. Let (X;, K;), with i = 1,2,3, be S-spaces, and let R C
X1 X Xo and T C Xy x X3 be meet-relations. Then, for every C € S(X3),
we have

DTOR(C> = (DR 9} DT)(C) = DT*R(C)

Hence, T * R C X1 x X3 is also a meet-relation.
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Proposition 3.17. For every S-space (X, K), the dual of the specialization
order J C X x X is a meet-relation. Moreover, for all meet-relations R C
XixXoandT C X9 x X3, JdoxR=R and Tx Jo=T.

Proposition 3.18. Let R C X1 X X9, S C Xox X3 and T C X3 x X4 be
meet-relations. Then T x (S * R) = (T * S) x R.
Proof. Tt follows from Proposition 3.16. (] (]

From the previous three propositions, we can define the category SS of
S-spaces and meet-relations, where the identity morphism is the dual of the

specialization order, and the composition is .

Proposition 3.19. Let R C X1 x X9 be a meet-relation. Then, the map
Ogr: S(X2) — S(X1) is a homomorphism of semilattices.

Recall that for every semilattice L, o: L — S(X(L)) is the isomorphism
given by o(a) = {P € X(L) : a € P}.

Proposition 3.20. Let h: Ly — Lo be a semilattice homomorphism. Then,
the relation Ry, C X(Lo) x X(L1) defined as follows:

(Q,P)€Ry < h™[QIC P,
for all (Q,P) € X(La) x X(L1), is a meet-relation. Moreover, g o h =
Og, 0 01.

Proof. Recall that S(X(L;)) = {oi(a) : a € L;} and for every a € Ly,

Ory, (01(a)) = {Q € X(L2) : Rn(Q) € 01(a)}-
Let a € Ly and Q € X(L2). Then,

Q € Og,(01(a)) <= Ri(Q) C o1(a)

— VP eX(L))(h QI CP = acP)

<= h(a) € Q

— Q € oz(h(a)).
Notice that in the third equivalence we have used that h='[Q] is a filter
of Ly and Theorem 2.1. Hence Op, (01(a)) = o2(h(a)). Thus, Rj, satisfies
condition (R1) of Definition 3.14. Moreover, we have proved that oy 0 h =
Og, o 01. For every Q € X(Lz), we have R,(Q) = N{o1(a) : a € h71Q]}.
Then, Ry(Q) € Cx,(X(Ly)). Thus Ry, satisfies condition (R2). Hence, R}, is
a meet-relation. O g
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For the next proposition, we need the following auxiliary lemma.

Lemma 3.21. Let R,T C X; x Xg, be meet-relations. If Or(B) = Op(B)
for all B € S(X3), then R=T.

Proof. 1t follows from the fact that for every x € X1, R(x),T(z) € Cx,(X2).
U U

Proposition 3.22. Let h: L1 — Lo and g: Lo — L3 be semilattice homo-
morphisms. Then, Rgop = Ry * Ry.
Proof. Since Ryop, Ry x Ry € X(L3) x X(Ly), it follows that

ORyon O(ryxry) : S(X(L1)) — S(X(L3)).

Let us to prove that Ugr, ., = Ug,«r,)- Let a € L1. By Propositions 3.20

and 3.16, we have

ORyen (01(a)) = 03((g 0 h)(a)) = (o3 0 g)(h(a)) = (g, © 02)(h(a))
= Ur,((Og, 0 01)(a)) = (Or, o Or,)(01(a)) = O(r,+r,)(01(a)).
Hence, by Lemma 3.21, we obtain that Ry, = Ry * Ry. U U
Let (X,K) be an S-space. By Proposition 3.12, we know that the map
Hyx: X — X(S(X)) defined by Hx(z) = {A € S(X) : « € A} is a homeo-
morphism. We define the relation Ry C X x X(S(X)) as follows:
(z, Hx(y)) € Rx <= Hx(z) C Hx(y)
for all z,y € X. We also define the relation Ry' C X(S(X)) x X as follows:
(Hx(y),w) € Ry' <= Hx(y) C Hx()
for all z,y € X.

Proposition 3.23. Let (X, ) be an S-space. Then, Rx and R)_(1 are meet-
relations. Moreover Rx * R;(l = Jx(s(x)) and R;(l * Rx = Jx.

Proof. Notice that for all z,y € X, Hx(z) C Hx(y) <= y Cx x, and
Ksxy = {Hx[U] : U € K} (Prop. 3.12). Then, it follows that Ry and R
are meet-relations. The identity Rx * R)_(1 = Jx(s(x)) follows from the facts
that QX(S(X)) =C,and A € Hx(ﬂi) < (RX o R;(l)(Hx(iL‘)) - Hx[A],
for every x € X and A € S(X). The identity R;(l * Rx = Jx follows
straightforward from definitions of * and Jx. O (|



14 SERGIO A. CELANI AND LUCIANO J. GONZALEZ

Now, from the results of the previous section and those developed here,

we are ready to establish and prove one of the main theorems of this paper.
Theorem 3.24. The categories MIS and SS are dually equivalent.

Proof. Let us define the corresponding functors. On the one hand, let
X: MS — SS be defined as follows: for every semilattice L, X(L) =
(X(L),Kr), and for every homomorphism h: L; — Lo, X(h) = R, C
X(L2) x X(L1). By Propositions 3.10 and 3.20, we have that X is well
defined. Since Riq, = dx(r) = C, where id: L — L is the identity homo-
morphism, and from Proposition 3.22, it follows that X is a contravariant
functor.

On the other hand, let S: SS — MS be defined as follows: for every
S-space (X,K), S(X) = (S(X),Nn, X), and for every meet-relation R C
X1 x X, S(R) =U0gr: S(X2) — S(X1). By Proposition 3.19, it is clear that
S is well defined. For every S-space X, o, = idg(x). Thus, by Proposition
3.16, S is a contravariant functor.

Now we need to define the corresponding natural transformations. For
every semilattice L, we consider the isomorphism o: L — S(X(L)). By
Proposition 3.20, we have for every semilattice homomorphism A: Lj — Lo
that ogoh = S(X(h))ooy. For every S-space X, we consider the isomorphism
(in the category SS) Rx C X x X(S(X)) (Prop. 3.23). Let R C X1 x X»
be a meet-relation. It follows that for every x € X1, (Rx, o R)(z) = (Rnj, ©
Rx,)(z). Then, we have Rx, * R = Rp, * Rx,. Therefore, the result
follows. U O

3.4. Topological duality for bounded lattices. Let BL be the category
of bounded lattices and lattice homomorphisms preserving bounds. We shall
restrict the functor X from MS to BL to obtain an equivalence between the

category BL and some subcategory of SS.

Definition 3.25. An L-space is an S-space (X, K) satisfying the following
conditions:

(L1) X e K;

(L2) foral U,V e L, | {WeK:WCUNV}eK.

Let (X, ) be an S-space. Recall that Cx(X) is the closure system on X
generated by S(X). Thus, (Cx(X),N,Y,0, X) is a (complete) lattice, where
for all Y1,Ys € Cx(X), Y1 VY, =clg(Y1 UY?).
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Proposition 3.26. Let (X,K) be an L-space. Then (S(X),N, ¥, 0, X) is a
sublattice of (Cic(X),N,Y,0, X).
(

Proof. 1t is clear that § € S(X). From condition (L2) we have, for all
A, B € S(X), that N{C € S(X): AUB C C} € S(X). Thus AY B =
Ck(AUB) =(){C € S(X): AUB C C}. Then AY B € S(X), for all
A, B € S(X). Hence S(X) is sublattice of Cx(X). O O

Let (L, A, V,0,1) be a bounded lattice. Consider the dual S-space (X(L),Kpr)
of the semilattice reduct (L, A,1). Recall that the semilattice isomorphism
o: L — S(X(L) is given by o(a) = {P € X(L) : a € P}.

Proposition 3.27. Let (L, A,V,0,1) be a bounded lattice. Then (X(L),Kr)
is an L-space, and moreover o: L — S(X(L)) is a lattice isomorphism from
(L,\,V,0,1) onto (S(X(L)),N,Y,0,X).

Proof. Since o(0) = 0, it follows that X = 0(0)° € K. Thus, (L1) is
satisfied. Let a,b € L. Let us prove that o(a Vb) = o(a) Y o(b). By
definition, o(a) ¥ o(b) = Cx,(c(a) Ua(b)) = ({o(c) € S(X(L)) : o(a) U
o(b) C o(c)}. On the one hand, since o is order-preserving, it follows that
Ck,(o(a) Ua(b)) C o(aVb). On the other hand, let ¢ € L be such that
o(a)Ua(b) C o(c). Since o is an order-embedding, it follows that a,b < c.
Thus a Vb < ¢. Then o(aVb) C o(c). Hence o(aVb) C o(a)Yo(b). We
have proved that o(a V b) = o(a) Y o(b). Let now o(a)®,o(b)¢ € Kr. Since
M{o(c) € S(X(L)) : o(a)Ua(b) Co(c)} =o(aVb) € S(X(L)), it follows that
U{o(c)¢ € Kr : o(c)® C o(a)*Na(b)¢} € K. Hence, condition (L2) holds.
Therefore, (X(L),Kr) is an L-space, and o is a lattice isomorphism. 0O O

Corollary 3.28. Let (L,A,V,0,1) be a bounded lattice, and (X,K) an L-
space. Then, (X(L),Kr) is an L-space, (S(X),N, Y, 0, X) is a bounded lat-
tice, and <La AV, 0, 1> = <S(X(L))7 N, M? (D? X> and <Xa IC> = <X(S(X))7 ICS(L)>

Definition 3.29. Let (X;,K;) and (X5, C2) be L-spaces. A relation R C
X1 x X9 is called an L-relation if it is a meet-relation and satisfies the
following:

(R3) R(x) # 0, for all x € X;.

(R4) Og (cli, (B1 U Ba)) C clg, (Or(B1) UOR(B2)), for all By, By € S(X2).

Proposition 3.30. Let (X1, K1) and (X2, K2) be L-spaces, and let R C X x
X be an L-relation. Then, Or: S(X2) — S(X1) is a lattice homomorphism

preserving bounds.
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Proof. We need only to prove that Og(0) = () and Og(B1 Y By) = Og(B1) Y
Or(Bsg), for all By,By € S(X32). By (R3), we have Or(0) = {z € X; :
R(z) C 0} = 0. Let By,Bs € S(X32). Since Upg is order-preserving, it
follows that Or(B1) YOg(B2) € Or(B1 Y By). The inverse inclusion follows
straightforward from (R4). Indeed, by (R4), we have

DR(Bl 4 BQ) = DR (Cl;c2 (Bl U Bz)) -
C clg, (DR(Bl) U DR(BQ)) = DR(Bl) v DR(BQ).
] U

Proposition 3.31. Let Ly and Lo be bounded lattices. If h: L1 — Lo is a
lattice homomorphism preserving bounds, then Ry C X(Lg2) x X(L1) is an

L-relation.

Proof. By Proposition 3.20, we know that R, C X(La) x X(L1) is a meet-
relation. Let @ € X(Lg). Since h is a lattice homomorphism preserving
bounds, we have h~1[Q] is a proper filter of Li. Thus, by Theorem 2.1,
there exists P € X(L1) such that h~1[Q] C P. Then Rj,(Q) # 0. Hence Ry,
satisfies condition (R3). In order to show that R}, satisfies condition (R4),
recall that S(X(L;)) = {oi(a) : a € L;} and Og, : S(X(L1)) — S(X(L2)).
Then, by Proposition 3.27 and Proposition 3.20, we have for all a,b € Ly
that

= cli,, (Or, (01(a)) UDR, (01(0)))
Hence, Ry, satisfies (R4). O O

From the categorical duality already established together with Proposi-
tions 3.30 and 3.31 and Proposition 3.16 it can be proved that the compo-
sition T * R C X7 x X3 of two L-relations R C X7 x Xo and T C X9 x X3
is again an L-relation. Moreover, it follows directly that for every L-space
X, the meet-relation J C X x X is an L-relation. Hence, we can define the
subcategory LS of SS formed by L-spaces and L-relations.
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Theorem 3.32. The categories BIL and LS are dually equivalent.

Proof. By Corollary 3.28 and Propositions 3.30 and 3.31, we can consider
the restrictions of the functors X and S given in Theorem 3.24 to the sub-
categories BL and LS, respectively. Therefore, it follows by Theorem 3.24
that the categories BLL and LS are dually equivalent under the functors
X:BL — LS and S: LS — BL. [l [l

4. DS-SPACES AND SPECTRAL SPACES

In this section, we shall characterize the spectral spaces (the dual objects
of bounded distributive lattices under the Stone’s duality) through the S-
spaces. To achieve this, we first characterize the DS-spaces (the dual objects
of semilattices under the Celani’s duality) through the S-spaces.

Given a set X and a family K of subsets of X, recall that (X, ) and
(X, 1) denote a topological space where 7 is the topology generated by
the subbase K.

A semilattice (L, A, 1) is said to be distributive ([15]) if for all a, by, b1 € L
such that by A b1 < a, there exist ag, a1 € L such that by < ag, b1 < a; and
a=agAay. If (L,A,V,0,1) is a lattice, then L is distributive (as lattice) if
and only if (L, A, 1) is distributive (as semilattice). A filter F' of a semilattice
L is said to be prime if for all Fy, Fy € Fi(L), F; N Fy C F implies F; C F
or Fp, C F. It is clear that every prime filter is an irreducible filter. The
primer filters of a distributive semilattice (lattice) are used to build up the
dual topological space of the semilattice (lattice) under the Gratzer’s duality
(Stone’s duality).

Proposition 4.1 ([2]). Let (L,A,1) be a semilattice. The following are
equivalent.

(1) L is distributive.

(2) The lattice Fi(L) is distributive.

(3) The irreducible filters of L coincide with the prime filters of L.

Let L be a distributive semilattice. Recall that X(L) is the collection of
all irreducible filters of L. By the previous proposition, X(L) is also the
collection of all prime filters of L. Recall also that o(a)={P € X(L) : a ¢
P}, for every a € L, and K1, = {o(a)¢:a € L}. Thus (X(L),Kr) is the dual
S-space of L.

From the distributivity of L can be proved that Kj coincide with the

collection of all compact open subsets, it is a base for the topology 7x, and
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the space (X(L), 1k, ) is sober, see [2] and [4]. Moreover, if L is a bounded

distributive lattice, then Ky, is closed under finite intersections.

Definition 4.2 ([4]). A topological space (X, ) is called a DS-space if:

(DS1) The set of all compact open subsets KO(X) of X is a base for 7.
(DS2) The space (X, T) is sober.

Definition 4.3 ([18, pp. 43]). A topological space (X, ) is called spectral

if:

(Spl) The set of all compact open subsets KO(X) of X is a base for 7 that
is closed under finite intersections and X € KO(X).

(Sp2) The space (X, 7) is sober.

From the previous observations we have the following.

Corollary 4.4. If L is a distributive semilattice, then the S-space (X(L),Kr)
is the dual DS-space of L. If L is a bounded distributive lattice, then the
S-space (X(L),Kr) is the dual spectral space of L.

Remark 4.5. It is straightforward that a topological space (X, T) is spectral
if and only if it is a DS-space and KXO(X) is closed under finite intersections.

In order to prove the main result of this section we need the following.
Let (X,K) be a topological space satisfying condition (S2) (see page 5).
Recall that (Cx(X),N,V) is a lattice. Let Y € Ci(X) (a subbasic closed
subset of X). We shall say that Y is K-irreducible if for all Y7,Ys € Cx(X),
Y =Y1VY; implies that Y = Y7 or Y = Y,. By Proposition 3.2 the following

lemma is clear.

Lemma 4.6. Let (X,K) be a topological space satisfying condition (S2). If
Y € Cx(X), then Y is K-irreducible if and only if the filter Fy of S(X) is
irreducible.

Proposition 4.7. Let (X,K) be a topological space satisfying conditions

(S1)—(S3). Then, the following are equivalent.

(1) (X,K) satisfies condition (S4).

(2) For every Y € Cx(X), if Y is K-irreducible, then there exists x € X
such that cl(z) =Y.

Proof. (1) = (2) Let Y € Cx(X) be K-irreducible. Thus Fy is an irreducible
filter of S(X). Then, by Proposition 3.8, there is z € X such that Fy =
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Hx(x) ={A € S(X):x € A}. Hence Y = (Fy =(Hx(z) = clg(z) =
cl(x).

(2) = (1) Let us prove that the map Hx: X — X(S(X)) is onto. Let
F € X(S(X)). By Proposition 3.2, there is Y € Cx(X) such that F' = Fy-.
Thus, by Lemma 4.6, Y is K-irreducible. Then, there is z € X such that
clig(z) = cl(z) =Y. Hence Hx(z) = Fy = F. We have proved that Hx is
onto. From Proposition 3.8, (X, K) satisfies condition (S4). O O

Notice that the previous proposition shows that condition (S4) of Defini-

tion 3.5 of S-space generalises sobriety.

Theorem 4.8. Let (X, K) be a topological space. The following are equiva-
lent.

(1) (X,7x) is a DS-space and K = KO(X).

(2) (X,K) is a S-space such that K is a base for Tx.

Proof. (1) = (2) Assume that (X, 7c) is a DS-space and K = KO(X). It
is clear that the space (X, ) satisfies conditions (S1)—(S3). Let us show
that condition (2) of the previous proposition holds. Since K = KO(X)
and KO(X) is a base for the topology 7i, it follows that Cx(X) = C(X).
Moreover, for all Y7, Y5 € Cxc(X), we have Y1 VY, = Y1UYs. Thus, Y € Cx(X)
is K-irreducible if and only if Y is irreducible (as a closed subset). Then,
since (X, 7x) is sober, it follows that for every K-irreducible ¥ € Cx(X)
there is x € X such that cli(z) = cl(x) = Y. Hence, by Proposition 4.7,
the space (X, K) satisfies condition (S4).

(2) = (1) Now we assume that (X, K) is a S-space and K is a base for 7i.
Since K is a base for the topology 7 of compact open subsets that is closed
under finite unions, it follows that K = KO(X). Then, Cx(X) = C(X).
Thus, Y € C(X) is irreducible (as a closed subset) if and only if YV is K-
irreducible. Hence, condition (2) of Proposition 4.7 implies that the space
(X, 1rc) is sober. Therefore, (X, ) is a DS-space. O O

Corollary 4.9. A topological space (X, 1xc) is spectral if and only if (X, )
is a S-space and K is a base for T that is closed under finite intersections.

5. THE REPRESENTATION BY MOSHIER AND JIPSEN

In [20] the authors develop a topological duality for semilattices and
bounded lattices. In order to obtain the dual space of a semilattice L,

they use the collection of all filters of L instead of only the irreducible ones.
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In this section, we will establish directly the equivalence between the
spaces given in [20] and the S-spaces and L-spaces. We begin presenting the
representation for semilattices and lattices developed in [20)].

Let (X, 7) be a Ty-space. Recall that C denotes the specialization order
of X. A nonempty subset F' C X is said to be a filter of X if F' is an upset
with respect to C and, for all x,y € F, there exists z € F such that z C x, y.

Let us denote by KOF(X) the collection of all compact open filters of X.

Lemma 5.1 ([20]). Let (X, 7) be a topological space. The compact filters of
X are exactly the principal upsets [z) ={y € X : x C y} of X.

An element a of a topological space X is called finite is [a) = {x € X :
a C z} is open. Thus, from the above lemma, it is clear that there is an
order-reversing bijection between KOF(X) and the set of all finite elements.
Thus, for every U € KOF(X), there is a finite element a € X such that
U=la)={zeX:aCua}.

Definition 5.2. A topological space (X, 7) is said to be an HMS space if:

(H1) KOF(X) forms a base that is closed under finite intersection and X €
KOF (X);
(H2) X is a sober space.

Let (L, A, 1) be a semilattice. For every a € L, let p(a) = {F € Fi(L) : a €
F}. Then, it is straightforward to check directly that By = {¢(a) : a € L}
is a base for a topology 77, on Fi(L). The space (Fi(L),7z) will be the
dual of the semilattice L. Now given an HMS space X, it is clear that
(KOF(X),N, X) is a semilattice, and it will be the dual of X. Consider the
maps ¢: L — KOF(Fi(L)), and 0: X — Fi(KOF(L)) defined by 6(z) =
{U e KOF(X):xzeU}.

Theorem 5.3 ([20]). Let (L,A,1) be a semilattice, and let (X,T) be an
HMS space. Then, (Fi(L), 1) is an HMS space and (KOF(X),N, X) is a
semilattice. Moreover, p: L — KOF (Fi(L)) is an isomorphism, and 0: X —
Fi(KOF (L)) is a homeomorphism.

5.1. From S-spaces to HMS spaces. Let (X,K) be an S-space. Let
Hic(X) = {UU :U CK}. That is, Hi(X) is the collection of all those
subsets of X that are arbitrary unions of members of K. Notice that
(Hic(X), \,U) is a complete lattice, where A H; = | J{U € K : U C (N H;},
for all H; € Hi(X).
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For every U € K, we define Vyy = {H € Hy(X) : U C H}. We consider
the topology Tras on Hic(X) generated by the family {Uy : U € K}. We
will prove in several steps that (Hx(X), Taars) is an HMS space.

Proposition 5.4. (Hx(X),Tams) is a To-space.

Proof. Let Hi, Hy € Hx(X) be such that H; # Hs. Assume that there is
x € X such that x € Hy and x ¢ Hs. Since H; € Hyi(X), it follows that
there is U € K such that x € U C Hy. Then, H; € Uy and Hy ¢ ¥yr. Hence
(Hic(X), Tams) is a To-space. O O

Proposition 5.5. The family {Vy : U € K} is a base for Hic(X) and closed

under finite intersection.

Proof. Let Uy, Us € K. Since K is closed under finite unions, we have U; U
Us; € K. Then, Y,uv, = Yy, N Yy,. ] O

Since {¥y : U € K} is a base for Hx(X), it follows that the specialization
order of the space (Hx(X), Taams) coincide with the set-theoretical inclusion.
That is, for all H,J € Hi(X), H T J <= H C J. Hence, since
K C Hi(X), we have that for every U € K, Uy = [U) = {H € Hi(X) :
UCH}={H € Hk(X):UC H}. Then, the following is clear.

Proposition 5.6. For all U € KC, Uy is a compact filter of Hic(X).

We have proved that {Uy : U € K} C KOF(Hx(X)). Now we prove that

the above inclusion is actually an equality.
Proposition 5.7. KOF(Hx (X)) = {Vy : U € K}.

Proof. Let U € KOF(Hx(X)). Since U is a compact filter of Hy(X), it
follows by Lemma 5.1 that there is H € Hy(X) such that Y = [H) = {J €
Hic(X) : H C J}. Since H € U and U is open, there is U € K such that
H e Uy CU. It follows that H = U. Hence U = [U) = Yy. O O

Proposition 5.8. The space (Hx(X), Trans) is sober.

Proof. Let F be a completely prime filter of the lattice of open subsets of the
space Hx(X). We need to prove that there exists an element H € Hy(X)
such that F =N(H) ={U € typms : H €eU}. Let D :={U € K : ¥y € F}.
Let H=JD € Hr(X).

Let U € N(H). Since U is an open of Hy(X), there is U € K such that
H e Yy CU. SoU C H =|JD. Since U is a compact open subset of
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X, it follows that there are Uy,...,U, € D such that U C Uy U --- U U,.
Since K is closed under finite unions and F is a filter of the lattice of open
subsets of Hc(X), we obtain that Uy U---UU, € D. Let V := Uy U---UU,,.
Thus U C V and ¥y € F. So ¥y C ¥y C U. Hence, since F is an upset
of Hx(X) with respect to the specialization order C = C, we have U € F.
Therefore, N(H) C F.

Let now U € F. Since U is open, it follows that U = J,c;
U; € K. Then, given that F is completely prime, ¥y, € F for some i € I.
Thus U; € D. It follows that U; C|JD = H. Thus H € ¥y, CU, and then
we have H € U. Hence U € N(H). Therefore F C N(H).

Hence, N(H) = F. Therefore, the space Hx(X) is sober. O O

Wy, for some

Thus, putting all these results together, we have proved the following.

Theorem 5.9. For every S-space (X,K), the space (Hic(X),Tums) is an
HMS space.

Notice that to prove the previous theorem is enough that the space (X, K)
satisfies only condition (S2). We will use in the next subsections that the
space (X, K) is an S-space.

Remark 5.10. Let (X, ) be an S-space. Recall that the dual semilattice
of (X,K) is S(X) = {U¢: U € K}. The dual semilattice of the HMS space
(Hic(X), mams) is KOF(Hi (X)) = {Vy : U € K}. Now it is straightfor-
ward to check that the semilattices S(X) and KOF(Hx (X)) are isomorphic
under the map U¢ — Uy;.

5.2. From HMS spaces to S-spaces. Let (X, 7) be an HMS space. By
[20, Lem. 3.1], we know that (X, C) is a complete lattice. We denote by 1
and LI the meet and join of X, respectively. Let us denote by M(X) the set
of all meet-irreducible elements of the lattice (X, M, L).

By [20, Theo. 3.7], the map #: X — Fi(KOF(X)) defined as 6(z) =
{U € KOF(X) : € U} is a homeomorphism. Then, it is clear that z C
y <= 6(x) C O(y). Thus, 6 is a lattice isomorphism from (X, ) onto
(Fi(KOF(X)), C).

Lemma 5.11. Let (X, 7) be an HMS space. Then, for every x € X that is
not the top, we have x = M{y € M(X):z C y}.

Proof. 1t follows from Corollary 2.2. O O
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Lemma 5.12. Let (X, 7) be an HMS space. Then, for every x € X and
UeceKOF(X),zeU < [z)NM(X)CU.

Proof. Recall that the opens are upsets regarding C. So, x € U implies
[x) " M(X) C U. Now suppose that [x) N M(X) C U. Since U € KOF(X),
there is a € X such that U = [a). By Lemma 5.11, a CM{y € M(X) : 2z C
y} =x. Thus z € U. O O

Proposition 5.13. Let (X, 7) be an HMS space. For all U,V € KOF(X),
we have
UNMX)CVNIMX) < UCV.

Proof. Let U,V € KOF(X). The implication from right to left is trivial.
Assume that UNM(X) C VN M(X). Let x € U. By Lemma 5.11, we
have z = M{y € M(X) : x C y}. Since U is an upset with respect to C, it
follows that {y € M(X) : x C y} CU. Thus {y e M(X) :z C y} C V.
Given that V' € KOF(X), there is a € X such that V = [a). Then, we get
r=M{ye M(X):2Cy}€a)=V. Hence U C V. O O

Lemma 5.14. Let (X,7) be an HMS space. Then, every finite element
a € X is a compact element of the lattice (X,C).

Proof. Let a € X be finite. Suppose that a T | |;c; z;. Since 6 is a lattice
isomorphism from X onto Fi(KOF(X)), it follows that

0(a) C 0 (|_| l’z) = \/ 0(x:) = Figgor(x) (U 9(%‘)) :

As a is finite, we have [a) € 0(a). Thus [a) € Figkop(x) (U0(:)). Then,
there are i1,...,4, € I such that [z;,) N ---N[z;,) € [a). Hence a C
xi, U---Ux;, . Therefore a is a compact element of the lattice X. 0O O

Definition 5.15. Let (X,7) be an HMS space. We define a topology on
M(X) generated by the family K x) = {U°NM(X) : U € KOF(X)}.

Notice that U¢ means X \ U. Thus U N M(X) = M(X)\ U. From now
on, (X, 7) will be an HMS space and (M(X), K r4(x)) will be the topological
space defined as above.

Since the space (X,7) is Tp, it follows that (M(X),Kpqx)) is also a
To-space.

Proposition 5.16. The family Ky (x) is a subbase of compact open subsets,
it is closed under finite unions and ) € K pq(x)-
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Proof. By definition, it is obvious that K x) is a subbase for the space
M(X). Since X € KOF(X) and KOF(X) is closed under finite intersection,
it follows that () € Kxqx) and Kpqx) is closed under finite unions. Let
U € KOF(X). Let us prove that U° N M(X) is a compact subset of the
space (M(X), Krqx)). Suppose that
U nM(X) | JUs n M(X).
el

Then, N;c; Ui N M(X) CUNM(X). As U,U; € KOF(X), for all i € I,
then U = [a) and U; = [a;), for some finite elements a,a; € X, Vi € I.
Thus N;erla:) N M(X) € [a) N M(X). By Lemma 5.11, it follows that
a C | |;c; ai- Since a is a finite element, we have by Lemma 5.14 that there
are ii,...,i, € I such that a C a;, U---Ua;,. Thus [a;,) N---Nai,) C [a).
That is, U;; N---NU;, CU. Then

UNnM(X) C (Ui "M(X))U---U (Ui NM(X)).
Hence U° N M(X) is a compact subset of the space M(X). O O

Proposition 5.17. The space (M(X),Kpqx)) satisfies condition (S3) of
Definition 3.5.

Proof. Given that #: X — Fi(KOF (X)) is a lattice isomorphism, notice that

for every y € M(X), 0(y) is an irreducible filter of the semilattice KOF(X).

Let now U,V € KOF(X) and y € (U N M(X)) N (VENM(X)). Thus,

U,V ¢ 6(y). By Lemma 2.3, there are W, D € KOF(X) such that D ¢ 6(y),

W eb(y)and, UNW C D and VNW C D. Thus

DN M(X) C[UNMX)N(VENM(X))U W NM(X))

and, y € D°NM(X) and y ¢ Wen M(X). O O

Remark 5.18. From the above results, we know that the space (M(X), Kpq(x))

satisfies conditions (S1)-(S3). Since Kyyx) = {(X \U)NM(X) : U €

KOF(X)}, it is clear that

SIM(X)) = IMX)\ [(X\U) N M(X)]: U € KOF(X)}

={UNM(X):U € KOF(X)}.

Hence, by Proposition 5.13, it follows that the two semilattices (KOF(X), N)

and (S(M(X)),N) are isomorphic.

Proposition 5.19. The space (M(X), K (x)) satisfies condition (S4).
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Proof. In order to prove that the space M (X)) satisfies condition (S4), we are
going to appeal to Proposition 3.8. Recall that the map Hp(x): M(X) —
X (S(M(X))) is defined by Hpx)(y) = {A € S(M(X)) :y € A}. We need
to prove that Hx) is onto. Let P € X(S(M(X))). Consider P={Uc¢
KOF(X) : UNM(X) € P}. Since P is an irreducible filter of the semilattice
S(M(X)), it follows that P is an irreducible filter of the semilattice KOF(X).
Given that 0: X — Fi(KOF(X)) is a lattice isomorphism, we get that there
is y € M(X) such that 6(y) = P. Thus, it follows that Hapxy(y) =
P. (I ([

From the above results we can conclude the following.

Theorem 5.20. For every HMS space (X,7), (M(X),Krx)) is an S-

space.

5.3. The equivalence between S-spaces and HMS spaces. Let (X, K)
be an S-space. Recall that its dual HMS space is (H(X),Tgars) where
HX)={UU : U C K}, KOF(H(X)) = {¥y : U € K} and ¥y = {H €
H(X): U C H}. Now the dual S-space of H(X) is (M(H(X)), Kyqm(x)))
where K (x)) = {¥G " M(H(X)) : U € K}.

Proposition 5.21. Let (X,K) be an S-space. Then, the function I'x: X —
M(H(X)) defined by T'x(z) = | U{U € K : = ¢ U} is a homeomorphism such
that ]CM(H(X)) = {Fx[U] :U € ]C}

Proof. Let us take into account the following. (i) Hx: X — X(S(X)) given
by Hx(z) = {A € S(X) : ¢ € A} is a homeomorphism. (ii) The map
: Fi(S(X)) — Cx(X) given by Yp = (| F' € Cx(X) is a dual isomorphism
(Prop. 3.2). (iii) The map (.)¢: Cx(X) — H(X) given by Y¢ = J{U € K :
Y C U¢} is a dual isomorphism.

From (ii) and (iii), we obtain that (.)¢ o (): X(S(X)) = M(H(X)) is a
bijective function. Then, it follows by (i) that the map (.)°o(JoHx: X —
M(H(X)) is a bijection, and T'x(z) = ((.) o [)oHx)(z), for all x € X.
Moreover, for every U € K, we have T'y'[¥§, N M(H(X))] = U. The result
follows. (] ]

Corollary 5.22. Let (X,KC) be an S-space. Then, the relation nx C X X
M(H(X)) defined by (x,T'x(z)) € nx < TI'x(z) C I'x(y) is an isomor-
phism of the category S.

Let (X, 7) be an HMS space. Recall that its dual S-space is (M(X), K rq(x))
where M(X) is the set of meet-irreducible elements of (X, M, 1) and K x) =
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{UcNM(X) : U € KOF(X)}. Now, the dual HMS space of M(X) is
(HM(X)), Tams) where H(M(X)) is the collection of all arbitrary unions
of ICM(X)? and thus KOF(%(M(X))) = {\I’UCQM(X) U € KOF(X)}

Proposition 5.23. Let (X, 7) be an HMS space. Then, the map Ax: X —
H(M(X)) defined by

Ax(z) = | U N M(X) : U € KOF(X) and z € U}
is a homeomorphism such that Ax[KOF(X)] = KOF(H(M(X)).

Proof. Let x1,x9 € X. Assume that Ax(z1) = Ax(z2). Suppose that
x1 £ x9. So, by Lemma 5.11, there is y € M(X) such that 9 C y and
x1 Z y. Thus y € Ax(x1) and y ¢ Ax(x2), a contradiction. Hence Ax
is injective. We prove that Ay is onto. Let H € H(M(X)). Thus H =
UIUS A M(X) : U € KOF(X) and U N M(X) C HY. Let Fy = {U €
KOF(X) : U°NM(X) C H}. It follows that Fg € Fi(KOF(X)). Then, by
Theorem 5.3, there is x € X such that Fg = 0(x) = {U € KOF(X) : x € U}.
Hence Ax(xz) = H. Thus Ax is onto. Now, it is not hard to show that for
every U € KOF(X), U = A)_(l [Wyeam(x))- Thus, since the compact open
filters form bases for the spaces X and H(M(X)), we obtain that Ax is
continuous and open. This completes the proof. O O

We now turn our attention to morphisms. Recall that SS denotes the
category of S-spaces and meet-relations.

Let X7 and X, be HMS spaces. A function f: X7 — Xy is said to be
F-continuous ([20]) if {f~1[V]:V € KOF(X3)} € KOF(X;). Let us denote
by HMS the category of HMS spaces and F-continuous functions.

Let X7 and X5 be HMS spaces and f: X1 — X5 an F-continuous map.
We define the relation Ry C M(X;) x M(X32) as follows:

(y1,92) € By <= f(y1) E w2
for all y; € M(X;) and y2 € M(X2). Notice that for every y € M(X7),
Ri(y) = {y2 € M(X2) : f(y) € w2} = [f(y)) N M(X2). Thus, by Lemma
511, N(Rs(y)) = [(y)-

Proposition 5.24. Ry is a meet-relation.

Proof. We need to prove conditions (R1) and (R2) of Definition 3.14. Let
B € S(M(X3)). So, there is V. € KOF(X3) such that B = V N M(X3)
(see Remark 5.18). Since V' € KOF(X32) and f is F-continuous, we have



A CATEGORICAL DUALITY FOR SEMILATTICES AND LATTICES 27

f71V] € KOF(X1), and thus f~}[V] N M(X;1) € S(M(X1)). Let us show
that DRf(VﬁM(XQ)) = f_l[V] ﬁM(Xl). Recall that DRf(VﬂM(XQ)) =
{y e M(X1) : Rf(y) CV N M(X2)}. By Lemma 5.12, we have

y € Or,(VIM(X2)) <= Ry(y) CV <= [fly) €V <= ye [ [VINM(X).

Hence (R1) holds. Moreover, it is straightforward to show that for every
y € M(X1), Ry(y) = ({B € S(M(X2)) : R¢(y) € B}. Hence (R2) holds.
O O

From the proof of Proposition 5.24, we have that for every F-continuous
map f: X1 — Xo, Ogr,(V N M(X2)) = fHV]NM(Xy), for all V €
KOF(X3).

Proposition 5.25. Let f: X1 — Xo and g: Xo — X3 be F-continuous
maps. Then Ryoy = Ry * Ry.

Proof. Since Ryor and Ry * Ry are meet-relations, it is enough by Lemma
3.21 to show that Ug,,,
Ury«r; = Ugr, o Ug,. Thus, it is enough to show that Ug ,, = Ug, oUg,.
Recall S(M(X3)) = {IWNM(X3): W € KOF(X3)}. Let W € KOF(X3).
Then,
Og, (Or,(W N M(X3))) =0g, (97 W] NM(X2))

= (go /)" W]INM(X1) =0pg,,,(WNM(X3)). O

O

= Ug,«r,;. Moreover, by Proposition 3.16, we have

Let (X1,K1) and (X9, K2) be S-spaces and R C X; X X3 a meet-relation.
We define the map fr: H(X;1) — H(X2) as follows:

fr(H) = {V € K2 : R7'[V] C H},
for every H € H(X1) and where R7}[V] ={x € X1 : (Jy € V) (z,y) € R}.

Remark 5.26. Let V € Ky. So V¢ € S(X3). Since R is a meet-relation, it
follows that Or(V¢) € S(X1). Thus Or(V)¢ € K. Moreover, it is easy to
check that R™![V] = Og(V¢)¢. Hence, R~![V] € K1, for all V € Ks.

Proposition 5.27. The map fr: H(X1) — H(X2) is F-continuous.

Proof. Recall that KOF(H(X3)) = {¥y : V € Ko} and Uy = {H € H(X3) :
V C H}. Let V € K. We know that R™'[V] € Ky, and thus Wp-1py) €
KOF(H(X1)). Let us show that fz'[Uy] = Wgo1py). Let H € H(Xy).



28 SERGIO A. CELANI AND LUCIANO J. GONZALEZ

Notice that H € fr'[Vy] <= V C fr(H). Thus, it is clear that Up1py) C
fr'[¥y]. Suppose now that H € fr'[Uy]. So V C fr(H). Since V is
compact, there are Vi,...,V, € Kz such that R~'[V}]U---UR™![V,] C H
and VC Vi U---UV,. Then R7![V] C H. Thus H € Wp-1yy). Hence
Frty] = Upo1y) € KOF(H(X1)). O O
Proposition 5.28. Let R C X1 x Xy and S C X9 X X3 be meet-relations.
Then, fs«r = fs© fr-

Proof. Let H € H(X1). By definition, we have fs.r(H) = [J{W € K3 :
(S*R)~YW] C H} and (fso fr)(H) ={W € K3 : S~}W] C fr(H)}. First
notice that S™1[W] C fr(H) <= (So R)"}[W] C H. Now by Remark
5.26 and Proposition 3.16, we have on the one hand

(S * R)"HW] = Osur(W) = (O 0 Os)(W)° = Or(Os(W))*,
and the other hand
(SoR)"'W]=R 'S [W]] = Or(S™'[W]°)° = Or(0s(W))".

Thus (S * R)“{W] = (S o R)“}W], for all W € K3. Hence fs.r(H) =
(fso fr)(H), for all H € H(X1). O ]

In order to prove the next proposition we need to note the following.
By what we have proved in Proposition 5.27, for every meet-relation R C
X1 x Xy, f'[WUy] = Wp-1py, for all V € K.
Proposition 5.29. Let R C X; x Xy be a meet-relation. Then, nx, * R =
Ry *nx, -
Proof. From Lemma 3.21 and Proposition 3.16, it is enough to show that
Oy, ©Ory, = Orolyy, . Since Ry, © M(H(X1)) x M(H(Xz)), it follows
that

DRfR: S(M(H(Xz))) — S(M(H(Xl)))

Recall that SIM(H(X;))) = {¥y : U € K;}.

Let V € Ky. We need to prove that

(Onx, ©Ory, ) (Yy N M(H(X2))) = (Or 0 Oy, ) (¥y N M(H(X2))).

Let @ € (O, o Og,, ) (Yv N M(H(X3))). Thus

nx,(x) € Or, (BvM(H(X2)) = [z [Bv]OM(H(X1)) = Yoy WM(H (X))

we need to show that nx,(y) € Uy N M(H(X2)). Let z € Xy be such that

2
We have to show that R(x) C O,y (Wy N M(H(X2))). Let y € R(x). Now
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I'x,(2) € nx,(y). Thus I'x, (y) C I'x,(2). Then z C y. We have to prove
that I'x,(z) € Uy. Notice that I'x,(z) € Uy <= V CT'x,(z) <= =z ¢
V. Now, since 'y, () € nx, () C ¥g-17y], it follows that R™'[V] C T'x, ().
Thus ¢ R™YV]. That is R(z) NV = (). Since y € R(x), we have y ¢ V.
Hence, we can conclude that R(z) C O, (¥y N M(H(X2))), which implies
that = € (Or o Opy ) (Wv N M(H(X2))).

Now let z € (Ogolyy, ) (Yv NM(H(X2))). Then, it follows that R(x) C
Ok, (Wv N M(H(X2))). We need to show that ny, (z) C W p-1y)NM(H (X
Let 2’ € X be such that I'y, (z’) € nx, (). We need to prove that I'x, (z') €
W p-1y]- Notice that Ix, (¢/) € Wp-1py) <= R7[V]C Ty, (2)) <= 2/ ¢
R7[V]. Suppose that 2/ € R7[V]. Since I'x,(z') € nx,(x), we have
Ix,(x) C I'x,(2'). Then 2’ C z. Now since 2’ € R™![V] € Ky, it follows
that € R71[V]. Thus, there is y € V such that y € R(z). By hypoth-
esis, we have nx,(y) € Wy. Given that I'x,(y) € nx,(y) C ¥y, we have
V CTx,(y). Thus y ¢ V, which is a contradiction. Hence

nx, (@) € Yr-1y) N M(H(X1)) = Ug,, (Ty N M(H(X2))).
Then, z € (Oyy, o Og,, ) (Ty N M(H(X3))). O O

Finally, we are ready to define the functors between the category SS of
S-spaces and the category HMS of HMS spaces, and prove the main result
of this section.

Let H: SS — HMS be defined as follows:

e for every S-space (X, K), H(X) = (Hi(X), Tams);
e for every meet-relation R C X; x X9, H(R) = fr: H(X1) = H(X2).
Let M: HMS — SS be defined as follows:
e for every HMS space (X, 7), M(X) = (M(X), Kpq(x));
o for every F-continuous map f: X; — Xo, M(f) = Ry C M(X) x
M(X3).

Theorem 5.30. H: SS — HMS and M: HMS — SS establish an equiva-
lence between the categories SS and HMS.

Proof. By Theorem 5.9 and Proposition 5.27, we have that H is well defined.
Recall that the identity morphism in SS is Jdx, for every S-space X. Thus
fay(H) = U{U € K : (Qx) U] € H} = H, for all H € H(X). Then,
H(Jx) = idyx), for every S-space X. Hence, by Proposition 5.28, we have
that H is a functor.
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By Theorem 5.20 and Proposition 5.24, we have that M is well defined.
Notice that for every HMS space X, M(idx) = Riqy = Jm(x)- Then, by
Proposition 5.25, M is a functor.

From Corollary 5.22, and Propositions 5.29 and 5.23, the corresponding

natural transformations are clear. This completes the proof. O O
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