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Abstract. The main aim of this article is to develop a categorical du-

ality between the category of semilattices with homomorphisms and a

category of certain topological spaces with certain morphisms. The prin-

cipal tool to achieve this goal is the notion of irreducible filter. Then, we

apply this dual equivalence to obtain a topological duality for the cate-

gory of bounded lattices and lattice homomorphism. We show that our

topological dualities for semilattices and lattices are natural generaliza-

tions of the duality developed by Stone for distributive lattices through

spectral spaces. Finally, we obtain directly the categorical equivalence

between our topological spaces and those presented for Moshier and

Jipsen (Topological duality and lattice expansions, I: A topological con-

struction of canonical extensions. Algebra Univers. 71 (2014), 109–

126.).

1. Introduction

The categorical dualities for ordered algebraic structures through topo-

logical spaces arose with the famous work of M. H. Stone [22] developing

a categorical duality between the category of Boolean algebras with homo-

morphisms and the category of compact Hausdorff zero-dimensional spaces

(called Boolean spaces or Stone spaces) with continuous functions. Then,

Stone himself extended this duality from Boolean algebras to bounded dis-

tributive lattices through spectral spaces and spectral functions ([13]). Some

time later, Priestley developed another topological duality from a different

approach for the category of distributive lattices employing compact totally
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order-disconnected spaces (called Priestley spaces) with continuous mono-

tone functions.

Both topological dualities for distributive lattices are very useful for the

study of distributive lattices and they are also a powerful mathematical

tool in the study of many non-classical logics having an algebraic semantics

based on distributive lattices (see for instance [19, 11]). From there, many

generalizations of the topological dualities for distributive lattices following

the Stone’s approach or the Priestley’s approach were obtained for several

ordered algebraic structures having an adequate distributivity condition [11,

9, 2, 3, 12, 1, 5, 7, 14, 6].

There are in the literature several categorical dualities for the category of

arbitrary bounded lattices following the ideas of Stone or Priestley [23, 17,

16]. It is fair to say that these topological dualities are closer to the Priest-

ley’s duality than the Stone one because the topological spaces obtained in

[23, 17, 16] are equipped with some additional structure.

Recently, in [20] Moshier and Jipsen developed a topological duality for

the category of bounded lattices following an approach different from Stone

and Priestley. Their duality is closely related to the concept of canonical

extension. But, it has the disadvantage that the dual object of a distribu-

tive lattice is neither the dual Stone space nor the dual Priestley space of

the distributive lattice. Thus, the duality given by Moshier and Jipsen is

neither a generalization of the Stone duality nor of the Priestley duality for

distributive lattices. Even in the Boolean case is not a generalization.

Our purpose in this paper is to develop a topological duality for the

category of semilattices (lattices) such that the dual objects are topological

spaces with no additional structure and in such a way that when restricted to

the full subcategory of distributive lattices coincides with the Stone duality.

The paper is organized as follows. In Section 2, we present several notions

and results needed for what follows in the paper. In Section 3, we introduce

the notion of S-space, and we establish the topological duality between the

category of semilattices and homomorphisms and the category of S-spaces

and meet-relations. Then, we apply this duality to obtain a categorical

duality between the category of lattices and homomorphism and the category

of L-spaces and L-relations. In Section 4, we show that our topological

duality for semilattices (and thus also for lattices) is a generalization of

the topological duality developed by Stone for the category of distributive
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lattices. We also characterize the spectral spaces through the concept of S-

space. Finally, in Section 5, we develop directly the categorical equivalence

between the category of S-spaces and meet-relations and the category of

HMS spaces and F-continuous functions. The HMS spaces are the dual

spaces of the semilattices used by Moshier and Jipsen in their topological

duality for semilattices.

2. Preliminaries

In this section, we will introduce some definitions and notations. Let X

be a set. Let P(X) be the powerset of X. For a subset Y of X, we shall

denote the complement of Y with respect to X by X \ Y or simply by Y c.

Our main references for Order and Lattice Theory are [8, 15]. Let ⟨L,≤⟩
be a poset. A subset U ⊆ L is said to be an upset of L if for all a, b ∈ L

such that a ∈ U and a ≤ b, we have b ∈ U . Dually, we have the notion of

downset.

A meet-semilattice with a greatest element is an algebra ⟨L,∧, 1⟩ of type
(2, 0) such that the operation ∧ is idempotent, commutative and associative,

and a∧ 1 = a, for all a ∈ L. As usual, the partial order ≤ associated with ∧
is defined on L as follows: a ≤ b if and only if a∧ b = a. In what follows, for

brevity, by semilattice we mean a meet-semilattice with a greatest element.

A bounded semilattice is an algebra ⟨L,∧, 0, 1⟩ of type (2, 0, 0) such that

⟨L,∧, 1⟩ is a semilattice and a ∧ 0 = 0 for all a ∈ L.

A nonempty subset F of a semilattice L is said to be a filter if F is an

upset, and a, b ∈ F implies a ∧ b ∈ F . We denote by Fi(L) the collection of

all filters of L. It is well known that Fi(L) is an algebraic closure system.

If we denote by Fig(.) the closure operator associated with Fi(L), it is also

known that the filter generated by a subset H ⊆ L can be characterized as

Fig(H) = {a ∈ L : ∃{h1, . . . , hn} ⊆ H s.t. h1 ∧ · · · ∧ hn ≤ a}.

A proper filter P of L is called irreducible when for all F1, F2 ∈ Fi(L), if

P = F1 ∩ F2, then P = F1 or P = F2. The set of all irreducible filters of L

will be denoted by X(L).

A nonempty subset I of a semilattice L is said to be an order-ideal if it

is a downset and, for all a, b ∈ I, there exists c ∈ I such that a, b ≤ c.

Theorem 2.1 ([2]). Let L be a semilattice. Let F ∈ Fi(L) and I an order-

ideal of L. If F ∩ I = ∅, then there exists P ∈ X(L) such that F ⊆ P and

P ∩ I = ∅.
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Corollary 2.2. Let L be a semilattice. Then every proper filter is the in-

tersection of irreducible filters.

The following lemma is a useful characterization of irreducible filters. It

will be important to develop our duality.

Lemma 2.3 ([2]). Let L be a semilattice and let F ∈ Fi(L). Then, F is

irreducible if and only if for every a, b /∈ F there exist c /∈ F and f ∈ F such

that a ∧ f ≤ c and b ∧ f ≤ c.

The following definition arises from the previous lemma.

Definition 2.4. Let L be a semilattice and F ∈ Fi(L). A subset I of L is

said to be an F -ideal if it is a downset, and for all a, b ∈ I, there exist c ∈ I

and f ∈ F such that a ∧ f ≤ c and b ∧ f ≤ c.

Thus, the previous lemma claims that a filter F is irreducible if and only

if F c is an F -ideal. The following theorem will be crucial for what follows.

Theorem 2.5. Let L be a semilattice. Let F ∈ Fi(L), and let I be an

F -ideal. If F ∩ I = ∅, then there exists P ∈ X(L) such that F ⊆ P and

P ∩ I = ∅.

Proof. Let us consider the family

F = {H ∈ Fi(L) : F ⊆ H and H ∩ I = ∅} .

We note that F ≠ ∅ because F ∈ F . By the Zorn’s lemma, there exists a

maximal element P of F . We prove that P is irreducible. Let F1, F2 ∈ Fi(L)

be such that P = F1 ∩ F2. Suppose that P ̸= F1 and P ̸= F2. Then

F1, F2 /∈ F . Thus F1 ∩ I ̸= ∅ and F2 ∩ I ̸= ∅. So, there exist a ∈ F1 ∩ I and

b ∈ F2 ∩ I. As a, b ∈ I and I is an F -ideal downset, there exist f ∈ F and

c ∈ I such that a∧ f ≤ c and b∧ f ≤ c. As f ∈ F ⊆ P , we get f ∈ F1 ∩ F2.

So, a ∧ f ∈ F1 and b ∧ f ∈ F2. It follows that c ∈ F1 ∩ F2, which is an

absurd. Hence, P = F1 or P = F2. □ □

We close this section introducing some topological concepts. We assume

that the reader is familiar with basic topological notions. We refer the reader

to [10].

Let ⟨X, τ⟩ be a topological space. We denote the collection of all closed

subsets of X by C(X), and for every Y ⊆ X, cl(Y ) denotes the topological

closure of Y . The specialization order of X is the binary relation ⊑ defined
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as follows: for all x, y ∈ X,

x ⊑ y ⇐⇒ ∀U ∈ τ(x ∈ U =⇒ y ∈ U) ⇐⇒ x ∈ cl(y).

It is clear that X is a T0-space if and only if ⊑ is a partial order.

A closed subset Y of X is said to be irreducible if Y ⊆ A ∪ B with

A,B ∈ C(X), then Y ⊆ A or Y ⊆ B. A topological space X is called sober

if it is T0 and, for every irreducible closed subset A, there is an element

x ∈ X such that Y = cl(x).

Lemma 2.6 ([21, 1.3.1]). A topological space ⟨X, τ⟩ is sober if and only if

it is T0 and for every completely prime filter F of the lattice of open subsets

of X, there is x ∈ X such that F = N(x) = {U ∈ τ : x ∈ U}.

3. Topological dualities

3.1. S-spaces. Let X be a nonempty set and let K ⊆ P(X). Let us denote

by τK the topology on X generated by K. In other words, τK is the smallest

topology on X such that K ⊆ τK. It is well known that τK consists of

∅, X, all finite intersections of K, and all arbitrary unions of these finite

intersections. The collection K is called a subbase for τK. We shall say

simply that ⟨X,K⟩ is a topological space, meaning that K is a subbase for

the smallest topology τK on X such that K ⊆ τK.

Let ⟨X,K⟩ be topological space. We consider the following collection of

subsets of X:

S(X) = {U c : U ∈ K}.

Let CK(X) be the closure system on X generated by S(X). Thus CK(X) =

{
⋂
A : A ⊆ S(X)}. We denote by clK the closure operator associated with

CK(X); that is,

clK(Y ) =
⋂

{A ∈ S(X) : Y ⊆ A},

for all Y ⊆ X. The elements of CK(X) will be called subbasic closed subsets

of X. Notice that S(X) ⊆ CK(X) ⊆ C(X).

Lemma 3.1. Let ⟨X,K⟩ be a topological space. Then,

(1) for every Y ⊆ X, cl(Y ) ⊆ clK(Y );

(2) cl(x) = clK(x), for all x ∈ X.

Proof. Property (1) is clear because CK(X) ⊆ C(X). Property (2) follows

from the fact that K is a subbase for the topology τK. □ □
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Let ⟨X,K⟩ be a topological space such that the subbase K is closed under

finite unions and ∅ ∈ K. Then ⟨S(X),∩, X⟩ is a semilattice, and it will

be called the dual semilattice of ⟨X,K⟩. Now we establish a relationship

between the subbasic closed subsets of a topological space ⟨X,K⟩ and the

filters of the semilattice S(X).

Proposition 3.2. Let ⟨X,K⟩ be a topological space such that K is a subbase

of compact open subsets, and it is closed under finite unions and ∅ ∈ K.

Then,

(1) for every Y ∈ CK(X), FY := {A ∈ S(X) : Y ⊆ A} ∈ Fi(S(X));

(2) for every F ∈ Fi(S(X)), YF :=
⋂
F ∈ CK(X);

(3) if Y1, Y2 ∈ CK(X) and Y1 ⊆ Y2, then FY2 ⊆ FY1;

(4) if F1, F2 ∈ Fi(S(X)) and F1 ⊆ F2, then YF2 ⊆ YF1;

(5) Y = YFY
, for all Y ∈ CK(X);

(6) F = FYF
, for all F ∈ Fi(S(X)).

Hence, the posets CK(X) and Fi(S(X)), both ordered by the set theoretic

inclusion, are dually isomorphic.

Proof. By the definition of CK(X), FY and YF , it is straightforward to show

directly that properties (1)-(5) hold. We prove property (6). Let F ∈
Fi(S(X)). We need to show that F = {A ∈ S(X) :

⋂
F ⊆ A}. It is clear

that F ⊆ {A ∈ S(X) :
⋂
F ⊆ A}. Now let A ∈ S(X) be such that

⋂
F ⊆ A.

So Ac ⊆
⋃
{Bc : B ∈ F}. Notice that Ac, Bc ∈ K for all Bc. Since Ac ∈ K

is compact, there are B1, . . . , Bn ∈ F such that Ac ⊆ Bc
1 ∪ · · · ∪ Bc

n. Thus

B1 ∩ · · · ∩ Bn ⊆ A, and since F is a filter of S(X), it follows that A ∈ F .

Then, {A ∈ S(X) :
⋂
F ⊆ A} ⊆ F . Hence F = FYF

. □ □

Definition 3.3. Let ⟨X,K⟩ be a topological space. Let Y ⊆ X. We will

say that a family Z ⊆ S(X) is a Y -family if for all A,B ∈ Z, there exist

H,C ∈ S(X) such that Y ⊆ H, C ∈ Z, A ∩H ⊆ C and B ∩H ⊆ C.

Proposition 3.4. Let ⟨X,K⟩ be a topological space such that K is a subbase

of compact open subsets, and it is closed under finite unions and ∅ ∈ K. Let

Y ∈ CK(X). Then, a downset Z ⊆ S(X) is a Y -family if and only if it is

an FY -ideal of S(X).

Definition 3.5. An S-space is a topological space ⟨X,K⟩ satisfying the

following:

(S1) ⟨X,K⟩ is a T0-space and X =
⋃
K;
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(S2) K is a subbase of compact open subsets, it is closed under finite unions

and ∅ ∈ K;

(S3) For all U, V ∈ K, if x ∈ U ∩ V , then there exist W,D ∈ K such that

x /∈ W , x ∈ D and D ⊆ (U ∩ V ) ∪W .

(S4) If Y ∈ CK(X) and Z ⊆ S(X) is a Y -family such that Y ∩ Ac ̸= ∅, for
all A ∈ Z, then Y ∩

⋂
{Ac : A ∈ Z} ̸= ∅.

Remark 3.6. Let ⟨X,K⟩ be a T1-space. Then, condition (S3) follows from

condition (S2). Indeed, let U, V ∈ K and x ∈ X be such that x ∈ U ∩V . Let

D ∈ K be such that x ∈ D (for instance, D := U). Since X is a T1-space,

we have that {x} is a closed subset of X. Then, by Lemma 3.1, we obtain

that {x} = cl(x) = clK(x) =
⋂
{A ∈ S(X) : x ∈ A}. Thus

{x}c =
⋃

{U ∈ K : x /∈ U}.

Hence, for every y ∈ D \ {x}, there is Uy ∈ K such that y ∈ Uy and x /∈ Uy.

Then, D \ {x} ⊆
⋃
{Uy : y ∈ D \ {x}}. We obtain that D ⊆

⋃
{Uy : y ∈

D \ {x}} ∪ (U ∩ V ). Since D ∈ K is compact, it follows that there are

y1, . . . , yn ∈ D \ {x} such that D ⊆ (Uy1 ∪ · · · ∪Uyn)∪ (U ∩ V ). By (S2), we

have that W := Uy1 ∪ · · · ∪ Uyn ∈ K. Then D ⊆ (U ∩ V ) ∪W and x /∈ W .

Hence (S3) holds.

Given a space ⟨X,K⟩ satisfying (S2), recall that X(S(X)) denotes the

collection of all irreducible filters of the semilattice ⟨S(X),∩, X⟩.

Lemma 3.7. Let ⟨X,K⟩ be a topological space satisfying conditions (S1)-

(S3). Then, for every x ∈ X, we have {A ∈ S(X) : x ∈ A} ∈ X(S(X)).

Proof. Let x ∈ X. We denote HX(x) := {A ∈ S(X) : x ∈ A}. It is clear that
HX(x) is a filter of S(X). Since X =

⋃
K, we have HX(x) ̸= S(X). Thus,

HX(x) is a proper filter of S(X). Now we show thatHX(x) is irreducible. Let

us use Lemma 2.3. Let A,B /∈ HX(x). Thus x ∈ Ac∩Bc and Ac, Bc ∈ K. By

(S3), there exist W,D ∈ K such that x /∈ W , x ∈ D and D ⊆ (Ac∩Bc)∪W .

Then, there are W c, Dc ∈ S(X) such that Dc /∈ HX(x), W c ∈ HX(x),

W c ∩ A ⊆ Dc and W c ∩ B ⊆ Dc. Hence, by Lemma 2.3, we obtain that

HX(x) is an irreducible filter of S(X). □

In the next result, we obtain an equivalent condition to condition (S4).

This will be useful for what follows.

Proposition 3.8. Let ⟨X,K⟩ be a topological space satisfying conditions

(S1)-(S3). Then, the following are equivalent.
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(1) The space ⟨X,K⟩ satisfies condition (S4).

(2) The map HX : X → X(S(X)) defined by

HX(x) = {A ∈ S(X) : x ∈ A}, for each x ∈ X,

is onto.

Proof. By Lemma 3.7, we have that HX is well defined.

(1) ⇒ (2) Let P ∈ X(S(X)). Consider the set Y =
⋂
{A : A ∈ P}. It

is clear that Y ∈ CK(X). Consider the family Z = {B ∈ S(X) : B /∈ P}.
As P is an irreducible filter of S(X), it is straightforward to check that Z
is a Y -family. We prove that Y ∩ Bc ̸= ∅, for all B ∈ Z. If there exists

B ∈ Z such that Y ⊆ B, we have that Bc ⊆
⋃
{Ac : A ∈ P}, and since

Bc ∈ K is compact, it follows that there exist A1, . . . , An ∈ P such that

A1 ∩ · · · ∩ An ⊆ B. As P is a filter, we obtain that B ∈ P , which is

impossible. Thus, Y ∩Bc ̸= ∅, for all B ∈ Z.

Then, by condition (S4), we have Y ∩
⋂
{Bc : B ∈ Z} ̸= ∅. So there exists

x ∈ Y ∩
⋂
{Bc : B ∈ Z}, which implies that P = HX(x).

(2) ⇒ (1) Let Y ∈ CK(X) and Z ⊆ S(X) be a Y -family such that Y ∩Bc ̸=
∅, for all B ∈ Z. We need to prove that Y ∩

⋂
{Bc : B ∈ Z} ≠ ∅. By

Proposition 3.2, we have that FY = {A ∈ S(X) : Y ⊆ A} ∈ Fi(S(X)) and⋂
FY = Y . Now let (Z] = {A ∈ S(X) : A ⊆ B, for some B ∈ Z}. Since Z

is a Y -family, it follows that (Z] is also a Y -family. By Proposition 3.4, we

have that (Z] is FY -ideal. Now let us show that FY ∩ (Z] = ∅. Suppose it

is not. Thus there is A ∈ FY and C ∈ Z such that A ⊆ C. Then, Y ⊆ C.

This is a contradiction because Y ∩ Bc ̸= ∅ for all B ∈ Z. Now, since

FY ∩ (Z] = ∅, it follows by Theorem 2.5 that there is P ∈ X(S(X)) such

that FY ⊆ P and P ∩ (Z] = ∅. By (2), there is x ∈ X such that HX(x) = P .

Then, since FY ⊆ HX(x) and (Z] ∩ HX(x) = ∅, we have that x ∈ Y and

x ∈ Bc, for all B ∈ Z. Hence Y ∩
⋂
{Bc : B ∈ Z} ̸= ∅. Therefore, we have

proved that the space ⟨X,K⟩ satisfies condition (S4). □ □

3.2. Representation for semilattices. Let ⟨L,∧, 1⟩ be a semilattice. Re-

call that X(L) denotes the collection of all irreducible filters of L. We define

the map σ : L → P(X(L)) as follows: σ(a) = {P ∈ X(L) : a ∈ P}, for

all a ∈ L. Let KL = {σ(a)c : a ∈ L}. Notice that for every a ∈ L,

σ(a)c = X(L) \ σ(a) = {P ∈ X(L) : a /∈ P}. It is straightforward to show

that, for all a, b ∈ L, σ(a∧ b) = σ(a)∩σ(b), and σ(1) = X(L). Moreover, by

Theorem 2.1, we have that a ≤ b if and only if σ(a) ⊆ σ(b), for all a, b ∈ L.
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We consider the topological space X(L) = ⟨X(L),KL⟩, which will be called

the dual S-space of L. Notice that S(X(L)) = {σ(a) : a ∈ L}. Hence, we

have the following result, which is straightforward.

Proposition 3.9. Let ⟨L,∧, 1⟩ be a semilattice. Then X(L) = ⟨X(L),KL⟩
is a topological space such that KL is a subbase closed under finite unions,

and ∅ ∈ KL. Moreover, the map σ : L → S(X(L)) is an isomorphism of

semilattices.

Proposition 3.10. Let ⟨L,∧, 1⟩ be a semilattice. Then, the topological space

⟨X(L),KL⟩ is an S-space.

Proof. It is clear that ⟨X(L),KL⟩ is a T0-space. Moreover, since every ir-

reducible filter F ∈ X(L) is proper, it follows that X(L) =
⋃
KL. Hence,

⟨X(L),KL⟩ satisfies condition (S1).

By the previous proposition, we know that KL is closed under finite

unions, and ∅ ∈ KL. Let a ∈ L. Assume that σ(a)c ⊆
⋃

b∈B σ(b)c for some

B ⊆ L. So
⋂

b∈B σ(b) ⊆ σ(a). Let F := FigL(B). If a /∈ F , then by Theorem

2.1 there is P ∈ X(L) such that F ⊆ P and a /∈ P . Thus P ∈
⋂

b∈B σ(b)

and P /∈ σ(a), which is a contradiction. Hence a ∈ F . Then, there exist

b1, . . . , bn ∈ F such that b1∧· · ·∧bn ≤ a. Hence σ(b1)∩ . . . σ(bn) ⊆ σ(a), and

thus σ(a)c ⊆ σ(b1)
c ∪ · · · ∪ σ(bn)

c. We have proved that any cover of σ(a)c

by elements of KL has a finite subcover. Then, since KL is a subbase for the

space ⟨X(L),KL⟩, it follows by the Alexander subbase Lemma that σ(a)c

is compact. Therefore, the topological space ⟨X(L),KL⟩ satisfies condition

(S2).

Condition (S3) follows from Lemma 2.3.

Finally, we prove that condition (S4) holds. Let Y ∈ CKL
(X(L)) and let

Z ⊆ S(X(L)) be a Y -family such that Y ∩ σ(a)c ̸= ∅, for all σ(a) ∈ Z.

Suppose, towards a contradiction, that Y ∩
⋂
{σ(a)c : σ(a) ∈ Z} = ∅. Since

Y ∈ CKL
(X(L)) it follows from Propositions 3.2 and 3.9, that F = σ−1[FY ]

is a filter of L. Since Z is a Y -family of S(X(L)), it follows that (Z] =

{σ(b) ∈ S(X(L)) : σ(b) ⊆ σ(a) for some σ(a) ∈ Z} is an F -ideal downset of

S(X(L). Thus, I = {b ∈ L : σ(b) ∈ (Z]} is an F -ideal downset of L. Now,

if I ∩ F ̸= ∅, then there is a ∈ L such that σ(a) ∈ Z and σ(a) ∈ FY ; thus

Y ∩ σ(a)c = ∅ with σ(a) ∈ Z, which is a contradiction. Hence, we have

F ∩ I = ∅. By Theorem 2.5, there exists P ∈ X(L) such that F ⊆ P and

P ∩ I = ∅. Then, since Y =
⋂
FY , it follows that P ∈ Y . Since P ∩ I = ∅,
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we obtain that P ∈ σ(a)c, for all a ∈ I. Thus P ∈ σ(a)c, for all σ(a) ∈ Z.

Hence P ∈ Y ∩
⋂
{σ(a)c : σ(a) ∈ Z}. This completes the proof. □ □

Theorem 3.11 (Topological representation). Every semilattice L is iso-

morphic to the dual semilattice S(X) of an S-space ⟨X,K⟩.

Let ⟨X,K⟩ be an S-space and consider its dual semilattice ⟨S(X),∩, X⟩.
Now we consider the dual S-space X(S(X)) = ⟨X(S(X)),KS(X)⟩ of the semi-

lattice S(X). Recall that HX : X → X(S(X)) is the map defined by

HX(x) = {A ∈ S(X) : x ∈ A}

for all x ∈ X (see Lemma 3.7).

Proposition 3.12. HX : X → X(S(X)) is a homeomorphism between the S-

spaces ⟨X,K⟩ and ⟨X(S(X)),KS(X)⟩. Moreover KS(X) = {HX [U ] : U ∈ K}.

Proof. We prove the theorem in several steps.

• HX is onto. It follows from Proposition 3.8.

• HX is one-to-one. Let x, y ∈ X and suppose that HX(x) = HX(y).

Notice that HX(x) = {A ∈ S(X) : clK(x) ⊆ A} = FclK(x). Thus FclK(x) =

FclK(y) and, by Proposition 3.2, it follows that clK(x) = clK(y). Since X is

a T0-space, it follows that x = y.

• HX is a continuous map. Notice that KS(X) = {σ(A)c : A ∈ S(X)}
where σ(A)c = {P ∈ X(S(X)) : A /∈ P}. Let A ∈ S(X) and x ∈ X. Then,

(3.1)

x ∈ H−1
X [σ(A)c] ⇐⇒ HX(x) ∈ σ(A)c ⇐⇒ A /∈ HX(x) ⇐⇒ x ∈ Ac.

ThusH−1
X [σ(A)c] = Ac ∈ K. Then, HX is continuous. By (3.1), we also have

proved that HX is an open map because H−1
X is a bijection between subbasic

open subsets. Hence HX is a homeomorphism. Moreover, from (3.1) we

obtain that KS(X) = {HX [U ] : U ∈ K}. This completes the proof. □ □

Corollary 3.13. Let L be a semilattice and ⟨X,K⟩ an S-space. Then

X(L) = ⟨X(L),KL⟩ is an S-space, S(X) = ⟨S(X),∩,X⟩ is a semilattice,

and L ∼= S(X(L)) and X ∼= X(S(X)).

3.3. Duality for semilattices. Our aim here is to extend the representa-

tion of semilattices through S-spaces to a full categorical duality. To this

end, we need to specify which are the morphisms between two objects in the

respective categories. For semilattices, the morphisms will be the natural

ones. Let us denote by MS the category of semilattices and homomorphisms

(that is, maps preserving meets and top element).
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Now, the morphisms for S-spaces should be the corresponding ones to the

homomorphisms. We shall consider the notion of meet-relation introduced

in [2, 4] (in [1] the authors considered the same notion of meet-relation to

develop a duality for the category of distributive semilattices). We need

to introduce some notations. Let R ⊆ X1 × X2 be a relation. For every

x ∈ X1, R(x) = {y ∈ X2 : (x, y) ∈ R}. For every y ∈ X2, R
−1(y) = {x ∈

X1 : (x, y) ∈ R}. Let □R : P(X2) → P(X1) be the map defined as follows:

for all B ⊆ X2,

□R(B) = {x ∈ X1 : R(x) ⊆ B}.

Definition 3.14. Let ⟨X1,K1⟩ and ⟨X2,K2⟩ be S-spaces. A relation R ⊆
X1 ×X2 is said to be a meet-relation if:

(R1) For all B ∈ S(X2), □R(B) ∈ S(X1).

(R2) For every x ∈ X1, R(x) ∈ CK2(X2).

Our definition of meet-relation is slightly different from the one given in

[4]. Here we use subbases K of compact opens, while in [4] the authors

work with the collection of all compact opens (which form a base for their

topology). Despite this slight difference, all the results about meet-relations

given in [4] are still valid here. Even more, the proofs presented in [4] can

be performed exactly in the same way here. Thus, we shall omit most of

these proofs and refer the reader to [4] (see also [2, 1]).

Definition 3.15. Let ⟨Xi,Ki⟩, with i = 1, 2, 3, be S-spaces, and let R ⊆
X1 × X2 and T ⊆ X2 × X3 be meet-relations. The composition between

R and T is defined by the relation T ∗ R ⊆ X1 × X3 as follows: for every

x ∈ X1 and z ∈ X3,

(x, z) ∈ T ∗R ⇐⇒ (∀D ∈ S(X3))((T ◦R)(x) ⊆ D =⇒ z ∈ D)

where T ◦R is the usual set-theoretical composition.

Notice that for every x ∈ X1,

(T ∗R)(x) = clK3 ((T ◦R)(x)) .

Proposition 3.16. Let ⟨Xi,Ki⟩, with i = 1, 2, 3, be S-spaces, and let R ⊆
X1 ×X2 and T ⊆ X2 ×X3 be meet-relations. Then, for every C ∈ S(X3),

we have

□T◦R(C) = (□R ◦□T )(C) = □T∗R(C).

Hence, T ∗R ⊆ X1 ×X3 is also a meet-relation.
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Proposition 3.17. For every S-space ⟨X,K⟩, the dual of the specialization

order ⊒ ⊆ X ×X is a meet-relation. Moreover, for all meet-relations R ⊆
X1 ×X2 and T ⊆ X2 ×X3, ⊒2 ∗R = R and T∗ ⊒2= T .

Proposition 3.18. Let R ⊆ X1 ×X2, S ⊆ X2 ×X3 and T ⊆ X3 ×X4 be

meet-relations. Then T ∗ (S ∗R) = (T ∗ S) ∗R.

Proof. It follows from Proposition 3.16. □ □

From the previous three propositions, we can define the category SS of

S-spaces and meet-relations, where the identity morphism is the dual of the

specialization order, and the composition is ∗.

Proposition 3.19. Let R ⊆ X1 × X2 be a meet-relation. Then, the map

□R : S(X2) → S(X1) is a homomorphism of semilattices.

Recall that for every semilattice L, σ : L → S(X(L)) is the isomorphism

given by σ(a) = {P ∈ X(L) : a ∈ P}.

Proposition 3.20. Let h : L1 → L2 be a semilattice homomorphism. Then,

the relation Rh ⊆ X(L2)×X(L1) defined as follows:

(Q,P ) ∈ Rh ⇐⇒ h−1[Q] ⊆ P,

for all (Q,P ) ∈ X(L2) × X(L1), is a meet-relation. Moreover, σ2 ◦ h =

□Rh
◦ σ1.

Proof. Recall that S(X(Li)) = {σi(a) : a ∈ Li} and for every a ∈ L1,

□Rh
(σ1(a)) = {Q ∈ X(L2) : Rh(Q) ⊆ σ1(a)}.

Let a ∈ L1 and Q ∈ X(L2). Then,

Q ∈ □Rh
(σ1(a)) ⇐⇒ Rh(Q) ⊆ σ1(a)

⇐⇒ ∀P ∈ X(L1)(h
−1[Q] ⊆ P =⇒ a ∈ P )

⇐⇒ h(a) ∈ Q

⇐⇒ Q ∈ σ2(h(a)).

Notice that in the third equivalence we have used that h−1[Q] is a filter

of L1 and Theorem 2.1. Hence □Rh
(σ1(a)) = σ2(h(a)). Thus, Rh satisfies

condition (R1) of Definition 3.14. Moreover, we have proved that σ2 ◦ h =

□Rh
◦ σ1. For every Q ∈ X(L2), we have Rh(Q) =

⋂
{σ1(a) : a ∈ h−1[Q]}.

Then, Rh(Q) ∈ CK1(X(L1)). Thus Rh satisfies condition (R2). Hence, Rh is

a meet-relation. □ □
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For the next proposition, we need the following auxiliary lemma.

Lemma 3.21. Let R, T ⊆ X1 ×X2, be meet-relations. If □R(B) = □T (B)

for all B ∈ S(X2), then R = T .

Proof. It follows from the fact that for every x ∈ X1, R(x), T (x) ∈ CK2(X2).

□ □

Proposition 3.22. Let h : L1 → L2 and g : L2 → L3 be semilattice homo-

morphisms. Then, Rg◦h = Rh ∗Rg.

Proof. Since Rg◦h, Rh ∗Rg ⊆ X(L3)×X(L1), it follows that

□Rg◦h ,□(Rh∗Rg) : S(X(L1)) → S(X(L3)).

Let us to prove that □Rg◦h = □(Rh∗Rg). Let a ∈ L1. By Propositions 3.20

and 3.16, we have

□Rg◦h(σ1(a)) = σ3((g ◦ h)(a)) = (σ3 ◦ g)(h(a)) = (□Rg ◦ σ2)(h(a))

= □Rg((□Rh
◦ σ1)(a)) = (□Rg ◦□Rh

)(σ1(a)) = □(Rh∗Rg)(σ1(a)).

Hence, by Lemma 3.21, we obtain that Rg◦h = Rh ∗Rg. □ □

Let ⟨X,K⟩ be an S-space. By Proposition 3.12, we know that the map

HX : X → X(S(X)) defined by HX(x) = {A ∈ S(X) : x ∈ A} is a homeo-

morphism. We define the relation RX ⊆ X ×X(S(X)) as follows:

(x,HX(y)) ∈ RX ⇐⇒ HX(x) ⊆ HX(y)

for all x, y ∈ X. We also define the relation R−1
X ⊆ X(S(X))×X as follows:

(HX(y), x) ∈ R−1
X ⇐⇒ HX(y) ⊆ HX(x)

for all x, y ∈ X.

Proposition 3.23. Let ⟨X,K⟩ be an S-space. Then, RX and R−1
X are meet-

relations. Moreover RX ∗R−1
X = ⊒X(S(X)) and R−1

X ∗RX = ⊒X .

Proof. Notice that for all x, y ∈ X, HX(x) ⊆ HX(y) ⇐⇒ y ⊑X x, and

KS(X) = {HX [U ] : U ∈ K} (Prop. 3.12). Then, it follows that RX and R−1
X

are meet-relations. The identity RX ∗R−1
X = ⊒X(S(X)) follows from the facts

that ⊒X(S(X)) = ⊆, and A ∈ HX(x) ⇐⇒ (RX ◦ R−1
X )(HX(x)) ⊆ HX [A],

for every x ∈ X and A ∈ S(X). The identity R−1
X ∗RX = ⊒X follows

straightforward from definitions of ∗ and ⊒X . □ □
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Now, from the results of the previous section and those developed here,

we are ready to establish and prove one of the main theorems of this paper.

Theorem 3.24. The categories MS and SS are dually equivalent.

Proof. Let us define the corresponding functors. On the one hand, let

X : MS → SS be defined as follows: for every semilattice L, X(L) =

⟨X(L),KL⟩, and for every homomorphism h : L1 → L2, X(h) = Rh ⊆
X(L2) × X(L1). By Propositions 3.10 and 3.20, we have that X is well

defined. Since RidL = ⊒X(L) = ⊆, where idL : L → L is the identity homo-

morphism, and from Proposition 3.22, it follows that X is a contravariant

functor.

On the other hand, let S : SS → MS be defined as follows: for every

S-space ⟨X,K⟩, S(X) = ⟨S(X),∩, X⟩, and for every meet-relation R ⊆
X1×X2, S(R) = □R : S(X2) → S(X1). By Proposition 3.19, it is clear that

S is well defined. For every S-space X, □⊒X = idS(X). Thus, by Proposition

3.16, S is a contravariant functor.

Now we need to define the corresponding natural transformations. For

every semilattice L, we consider the isomorphism σ : L → S(X(L)). By

Proposition 3.20, we have for every semilattice homomorphism h : L1 → L2

that σ2◦h = S(X(h))◦σ1. For every S-spaceX, we consider the isomorphism

(in the category SS) RX ⊆ X ×X(S(X)) (Prop. 3.23). Let R ⊆ X1 ×X2

be a meet-relation. It follows that for every x ∈ X1, (RX2 ◦R)(x) = (R□R ◦
RX1)(x). Then, we have RX2 ∗ R = R□R ∗ RX1 . Therefore, the result

follows. □ □

3.4. Topological duality for bounded lattices. Let BL be the category

of bounded lattices and lattice homomorphisms preserving bounds. We shall

restrict the functor X from MS to BL to obtain an equivalence between the

category BL and some subcategory of SS.

Definition 3.25. An L-space is an S-space ⟨X,K⟩ satisfying the following

conditions:

(L1) X ∈ K;

(L2) for all U, V ∈ K,
⋃
{W ∈ K : W ⊆ U ∩ V } ∈ K.

Let ⟨X,K⟩ be an S-space. Recall that CK(X) is the closure system on X

generated by S(X). Thus, ⟨CK(X),∩,⊻, ∅, X⟩ is a (complete) lattice, where

for all Y1, Y2 ∈ CK(X), Y1 ⊻ Y2 = clK(Y1 ∪ Y2).
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Proposition 3.26. Let ⟨X,K⟩ be an L-space. Then ⟨S(X),∩,⊻, ∅, X⟩ is a

sublattice of ⟨CK(X),∩,⊻, ∅, X⟩.

Proof. It is clear that ∅ ∈ S(X). From condition (L2) we have, for all

A,B ∈ S(X), that
⋂
{C ∈ S(X) : A ∪ B ⊆ C} ∈ S(X). Thus A ⊻ B =

CK(A ∪ B) =
⋂
{C ∈ S(X) : A ∪ B ⊆ C}. Then A ⊻ B ∈ S(X), for all

A,B ∈ S(X). Hence S(X) is sublattice of CK(X). □ □

Let ⟨L,∧,∨, 0, 1⟩ be a bounded lattice. Consider the dual S-space ⟨X(L),KL⟩
of the semilattice reduct ⟨L,∧, 1⟩. Recall that the semilattice isomorphism

σ : L → S(X(L) is given by σ(a) = {P ∈ X(L) : a ∈ P}.

Proposition 3.27. Let ⟨L,∧,∨, 0, 1⟩ be a bounded lattice. Then ⟨X(L),KL⟩
is an L-space, and moreover σ : L → S(X(L)) is a lattice isomorphism from

⟨L,∧,∨, 0, 1⟩ onto ⟨S(X(L)),∩,⊻, ∅,X⟩.

Proof. Since σ(0) = ∅, it follows that X = σ(0)c ∈ KL. Thus, (L1) is

satisfied. Let a, b ∈ L. Let us prove that σ(a ∨ b) = σ(a) ⊻ σ(b). By

definition, σ(a) ⊻ σ(b) = CKL
(σ(a) ∪ σ(b)) =

⋂
{σ(c) ∈ S(X(L)) : σ(a) ∪

σ(b) ⊆ σ(c)}. On the one hand, since σ is order-preserving, it follows that

CKL
(σ(a) ∪ σ(b)) ⊆ σ(a ∨ b). On the other hand, let c ∈ L be such that

σ(a) ∪ σ(b) ⊆ σ(c). Since σ is an order-embedding, it follows that a, b ≤ c.

Thus a ∨ b ≤ c. Then σ(a ∨ b) ⊆ σ(c). Hence σ(a ∨ b) ⊆ σ(a) ⊻ σ(b). We

have proved that σ(a ∨ b) = σ(a) ⊻ σ(b). Let now σ(a)c, σ(b)c ∈ KL. Since⋂
{σ(c) ∈ S(X(L)) : σ(a)∪σ(b) ⊆ σ(c)} = σ(a∨b) ∈ S(X(L)), it follows that⋃
{σ(c)c ∈ KL : σ(c)c ⊆ σ(a)c ∩ σ(b)c} ∈ KL. Hence, condition (L2) holds.

Therefore, ⟨X(L),KL⟩ is an L-space, and σ is a lattice isomorphism. □ □

Corollary 3.28. Let ⟨L,∧,∨, 0, 1⟩ be a bounded lattice, and ⟨X,K⟩ an L-

space. Then, ⟨X(L),KL⟩ is an L-space, ⟨S(X),∩,⊻, ∅, X⟩ is a bounded lat-

tice, and ⟨L,∧,∨, 0, 1⟩ ∼= ⟨S(X(L)),∩,⊻, ∅, X⟩ and ⟨X,K⟩ ∼= ⟨X(S(X)),KS(L)⟩.

Definition 3.29. Let ⟨X1,K1⟩ and ⟨X2,K2⟩ be L-spaces. A relation R ⊆
X1 × X2 is called an L-relation if it is a meet-relation and satisfies the

following:

(R3) R(x) ̸= ∅, for all x ∈ X1.

(R4) □R (clK2(B1 ∪B2)) ⊆ clK1 (□R(B1) ∪□R(B2)), for allB1, B2 ∈ S(X2).

Proposition 3.30. Let ⟨X1,K1⟩ and ⟨X2,K2⟩ be L-spaces, and let R ⊆ X1×
X2 be an L-relation. Then, □R : S(X2) → S(X1) is a lattice homomorphism

preserving bounds.
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Proof. We need only to prove that □R(∅) = ∅ and □R(B1 ⊻B2) = □R(B1)⊻

□R(B2), for all B1, B2 ∈ S(X2). By (R3), we have □R(∅) = {x ∈ X1 :

R(x) ⊆ ∅} = ∅. Let B1, B2 ∈ S(X2). Since □R is order-preserving, it

follows that □R(B1)⊻□R(B2) ⊆ □R(B1⊻B2). The inverse inclusion follows

straightforward from (R4). Indeed, by (R4), we have

□R(B1 ⊻B2) = □R (clK2(B1 ∪B2)) ⊆

⊆ clK1 (□R(B1) ∪□R(B2)) = □R(B1) ⊻ □R(B2).

□ □

Proposition 3.31. Let L1 and L2 be bounded lattices. If h : L1 → L2 is a

lattice homomorphism preserving bounds, then Rh ⊆ X(L2) × X(L1) is an

L-relation.

Proof. By Proposition 3.20, we know that Rh ⊆ X(L2) × X(L1) is a meet-

relation. Let Q ∈ X(L2). Since h is a lattice homomorphism preserving

bounds, we have h−1[Q] is a proper filter of L1. Thus, by Theorem 2.1,

there exists P ∈ X(L1) such that h−1[Q] ⊆ P . Then Rh(Q) ̸= ∅. Hence Rh

satisfies condition (R3). In order to show that Rh satisfies condition (R4),

recall that S(X(Li)) = {σi(a) : a ∈ Li} and □Rh
: S(X(L1)) → S(X(L2)).

Then, by Proposition 3.27 and Proposition 3.20, we have for all a, b ∈ L1

that

□Rh

(
clKL1

(σ1(a) ∪ σ1(b))
)
= □Rh

(σ1(a) ⊻ σ1(b))

= □Rh
(σ1(a ∨ b))

= σ2(h(a ∨ b))

= σ2(h(a) ∨ h(b))

= σ2(h(a)) ⊻ σ2(h(b))

= □Rh
(σ1(a)) ⊻ □Rh

(σ1(b))

= clKL2
(□Rh

(σ1(a)) ∪□Rh
(σ1(b)))

Hence, Rh satisfies (R4). □ □

From the categorical duality already established together with Proposi-

tions 3.30 and 3.31 and Proposition 3.16 it can be proved that the compo-

sition T ∗ R ⊆ X1 ×X3 of two L-relations R ⊆ X1 ×X2 and T ⊆ X2 ×X3

is again an L-relation. Moreover, it follows directly that for every L-space

X, the meet-relation ⊒ ⊆ X ×X is an L-relation. Hence, we can define the

subcategory LS of SS formed by L-spaces and L-relations.
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Theorem 3.32. The categories BL and LS are dually equivalent.

Proof. By Corollary 3.28 and Propositions 3.30 and 3.31, we can consider

the restrictions of the functors X and S given in Theorem 3.24 to the sub-

categories BL and LS, respectively. Therefore, it follows by Theorem 3.24

that the categories BL and LS are dually equivalent under the functors

X : BL → LS and S : LS → BL. □ □

4. DS-spaces and spectral spaces

In this section, we shall characterize the spectral spaces (the dual objects

of bounded distributive lattices under the Stone’s duality) through the S-

spaces. To achieve this, we first characterize the DS-spaces (the dual objects

of semilattices under the Celani’s duality) through the S-spaces.

Given a set X and a family K of subsets of X, recall that ⟨X,K⟩ and

⟨X, τK⟩ denote a topological space where τK is the topology generated by

the subbase K.

A semilattice ⟨L,∧, 1⟩ is said to be distributive ([15]) if for all a, b0, b1 ∈ L

such that b0 ∧ b1 ≤ a, there exist a0, a1 ∈ L such that b0 ≤ a0, b1 ≤ a1 and

a = a0 ∧ a1. If ⟨L,∧,∨, 0, 1⟩ is a lattice, then L is distributive (as lattice) if

and only if ⟨L,∧, 1⟩ is distributive (as semilattice). A filter F of a semilattice

L is said to be prime if for all F1, F2 ∈ Fi(L), F1 ∩ F2 ⊆ F implies F1 ⊆ F

or F2 ⊆ F . It is clear that every prime filter is an irreducible filter. The

primer filters of a distributive semilattice (lattice) are used to build up the

dual topological space of the semilattice (lattice) under the Grätzer’s duality

(Stone’s duality).

Proposition 4.1 ([2]). Let ⟨L,∧, 1⟩ be a semilattice. The following are

equivalent.

(1) L is distributive.

(2) The lattice Fi(L) is distributive.

(3) The irreducible filters of L coincide with the prime filters of L.

Let L be a distributive semilattice. Recall that X(L) is the collection of

all irreducible filters of L. By the previous proposition, X(L) is also the

collection of all prime filters of L. Recall also that σ(a)c = {P ∈ X(L) : a /∈
P}, for every a ∈ L, and KL = {σ(a)c : a ∈ L}. Thus ⟨X(L),KL⟩ is the dual
S-space of L.

From the distributivity of L can be proved that KL coincide with the

collection of all compact open subsets, it is a base for the topology τKL
and
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the space ⟨X(L), τKL
⟩ is sober, see [2] and [4]. Moreover, if L is a bounded

distributive lattice, then KL is closed under finite intersections.

Definition 4.2 ([4]). A topological space ⟨X, τ⟩ is called a DS-space if:

(DS1) The set of all compact open subsets KO(X) of X is a base for τ .

(DS2) The space ⟨X, τ⟩ is sober.

Definition 4.3 ([18, pp. 43]). A topological space ⟨X, τ⟩ is called spectral

if:

(Sp1) The set of all compact open subsets KO(X) of X is a base for τ that

is closed under finite intersections and X ∈ KO(X).

(Sp2) The space ⟨X, τ⟩ is sober.

From the previous observations we have the following.

Corollary 4.4. If L is a distributive semilattice, then the S-space ⟨X(L),KL⟩
is the dual DS-space of L. If L is a bounded distributive lattice, then the

S-space ⟨X(L),KL⟩ is the dual spectral space of L.

Remark 4.5. It is straightforward that a topological space ⟨X, τ⟩ is spectral
if and only if it is a DS-space and KO(X) is closed under finite intersections.

In order to prove the main result of this section we need the following.

Let ⟨X,K⟩ be a topological space satisfying condition (S2) (see page 5).

Recall that ⟨CK(X),∩,⊻⟩ is a lattice. Let Y ∈ CK(X) (a subbasic closed

subset of X). We shall say that Y is K-irreducible if for all Y1, Y2 ∈ CK(X),

Y = Y1⊻Y2 implies that Y = Y1 or Y = Y2. By Proposition 3.2 the following

lemma is clear.

Lemma 4.6. Let ⟨X,K⟩ be a topological space satisfying condition (S2). If

Y ∈ CK(X), then Y is K-irreducible if and only if the filter FY of S(X) is

irreducible.

Proposition 4.7. Let ⟨X,K⟩ be a topological space satisfying conditions

(S1)–(S3). Then, the following are equivalent.

(1) ⟨X,K⟩ satisfies condition (S4).

(2) For every Y ∈ CK(X), if Y is K-irreducible, then there exists x ∈ X

such that cl(x) = Y .

Proof. (1) ⇒ (2) Let Y ∈ CK(X) be K-irreducible. Thus FY is an irreducible

filter of S(X). Then, by Proposition 3.8, there is x ∈ X such that FY =
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HX(x) = {A ∈ S(X) : x ∈ A}. Hence Y =
⋂
FY =

⋂
HX(x) = clK(x) =

cl(x).

(2) ⇒ (1) Let us prove that the map HX : X → X(S(X)) is onto. Let

F ∈ X(S(X)). By Proposition 3.2, there is Y ∈ CK(X) such that F = FY .

Thus, by Lemma 4.6, Y is K-irreducible. Then, there is x ∈ X such that

clK(x) = cl(x) = Y . Hence HX(x) = FY = F . We have proved that HX is

onto. From Proposition 3.8, ⟨X,K⟩ satisfies condition (S4). □ □

Notice that the previous proposition shows that condition (S4) of Defini-

tion 3.5 of S-space generalises sobriety.

Theorem 4.8. Let ⟨X,K⟩ be a topological space. The following are equiva-

lent.

(1) ⟨X, τK⟩ is a DS-space and K = KO(X).

(2) ⟨X,K⟩ is a S-space such that K is a base for τK.

Proof. (1) ⇒ (2) Assume that ⟨X, τK⟩ is a DS-space and K = KO(X). It

is clear that the space ⟨X,K⟩ satisfies conditions (S1)–(S3). Let us show

that condition (2) of the previous proposition holds. Since K = KO(X)

and KO(X) is a base for the topology τK, it follows that CK(X) = C(X).

Moreover, for all Y1, Y2 ∈ CK(X), we have Y1⊻Y2 = Y1∪Y2. Thus, Y ∈ CK(X)

is K-irreducible if and only if Y is irreducible (as a closed subset). Then,

since ⟨X, τK⟩ is sober, it follows that for every K-irreducible Y ∈ CK(X)

there is x ∈ X such that clK(x) = cl(x) = Y . Hence, by Proposition 4.7,

the space ⟨X,K⟩ satisfies condition (S4).

(2) ⇒ (1) Now we assume that ⟨X,K⟩ is a S-space and K is a base for τK.

Since K is a base for the topology τK of compact open subsets that is closed

under finite unions, it follows that K = KO(X). Then, CK(X) = C(X).

Thus, Y ∈ C(X) is irreducible (as a closed subset) if and only if Y is K-

irreducible. Hence, condition (2) of Proposition 4.7 implies that the space

⟨X, τK⟩ is sober. Therefore, ⟨X, τK⟩ is a DS-space. □ □

Corollary 4.9. A topological space ⟨X, τK⟩ is spectral if and only if ⟨X,K⟩
is a S-space and K is a base for τK that is closed under finite intersections.

5. The representation by Moshier and Jipsen

In [20] the authors develop a topological duality for semilattices and

bounded lattices. In order to obtain the dual space of a semilattice L,

they use the collection of all filters of L instead of only the irreducible ones.



20 SERGIO A. CELANI AND LUCIANO J. GONZÁLEZ

In this section, we will establish directly the equivalence between the

spaces given in [20] and the S-spaces and L-spaces. We begin presenting the

representation for semilattices and lattices developed in [20].

Let ⟨X, τ⟩ be a T0-space. Recall that ⊑ denotes the specialization order

of X. A nonempty subset F ⊆ X is said to be a filter of X if F is an upset

with respect to ⊑ and, for all x, y ∈ F , there exists z ∈ F such that z ⊑ x, y.

Let us denote by KOF(X) the collection of all compact open filters of X.

Lemma 5.1 ([20]). Let ⟨X, τ⟩ be a topological space. The compact filters of

X are exactly the principal upsets [x) = {y ∈ X : x ⊑ y} of X.

An element a of a topological space X is called finite is [a) = {x ∈ X :

a ⊑ x} is open. Thus, from the above lemma, it is clear that there is an

order-reversing bijection between KOF(X) and the set of all finite elements.

Thus, for every U ∈ KOF(X), there is a finite element a ∈ X such that

U = [a) = {x ∈ X : a ⊑ x}.

Definition 5.2. A topological space ⟨X, τ⟩ is said to be an HMS space if:

(H1) KOF(X) forms a base that is closed under finite intersection and X ∈
KOF(X);

(H2) X is a sober space.

Let ⟨L,∧, 1⟩ be a semilattice. For every a ∈ L, let φ(a) = {F ∈ Fi(L) : a ∈
F}. Then, it is straightforward to check directly that BL = {φ(a) : a ∈ L}
is a base for a topology τL on Fi(L). The space ⟨Fi(L), τL⟩ will be the

dual of the semilattice L. Now given an HMS space X, it is clear that

⟨KOF(X),∩, X⟩ is a semilattice, and it will be the dual of X. Consider the

maps φ : L → KOF(Fi(L)), and θ : X → Fi(KOF(L)) defined by θ(x) =

{U ∈ KOF(X) : x ∈ U}.

Theorem 5.3 ([20]). Let ⟨L,∧, 1⟩ be a semilattice, and let ⟨X, τ⟩ be an

HMS space. Then, ⟨Fi(L), τL⟩ is an HMS space and ⟨KOF(X),∩, X⟩ is a

semilattice. Moreover, φ : L → KOF(Fi(L)) is an isomorphism, and θ : X →
Fi(KOF(L)) is a homeomorphism.

5.1. From S-spaces to HMS spaces. Let ⟨X,K⟩ be an S-space. Let

HK(X) = {
⋃

U : U ⊆ K}. That is, HK(X) is the collection of all those

subsets of X that are arbitrary unions of members of K. Notice that

⟨HK(X),
∧
,
⋃
⟩ is a complete lattice, where

∧
Hi =

⋃
{U ∈ K : U ⊆

⋂
Hi},

for all Hi ∈ HK(X).
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For every U ∈ K, we define ΨU = {H ∈ HK(X) : U ⊆ H}. We consider

the topology τHMS on HK(X) generated by the family {ΨU : U ∈ K}. We

will prove in several steps that ⟨HK(X), τHMS⟩ is an HMS space.

Proposition 5.4. ⟨HK(X), τHMS⟩ is a T0-space.

Proof. Let H1, H2 ∈ HK(X) be such that H1 ̸= H2. Assume that there is

x ∈ X such that x ∈ H1 and x /∈ H2. Since H1 ∈ HK(X), it follows that

there is U ∈ K such that x ∈ U ⊆ H1. Then, H1 ∈ ΨU and H2 /∈ ΨU . Hence

⟨HK(X), τHMS⟩ is a T0-space. □ □

Proposition 5.5. The family {ΨU : U ∈ K} is a base for HK(X) and closed

under finite intersection.

Proof. Let U1, U2 ∈ K. Since K is closed under finite unions, we have U1 ∪
U2 ∈ K. Then, ΨU1∪U2 = ΨU1 ∩ΨU2 . □ □

Since {ΨU : U ∈ K} is a base for HK(X), it follows that the specialization

order of the space ⟨HK(X), τHMS⟩ coincide with the set-theoretical inclusion.

That is, for all H,J ∈ HK(X), H ⊑ J ⇐⇒ H ⊆ J . Hence, since

K ⊆ HK(X), we have that for every U ∈ K, ΨU = [U) = {H ∈ HK(X) :

U ⊑ H} = {H ∈ HK(X) : U ⊆ H}. Then, the following is clear.

Proposition 5.6. For all U ∈ K, ΨU is a compact filter of HK(X).

We have proved that {ΨU : U ∈ K} ⊆ KOF(HK(X)). Now we prove that

the above inclusion is actually an equality.

Proposition 5.7. KOF(HK(X)) = {ΨU : U ∈ K}.

Proof. Let U ∈ KOF(HK(X)). Since U is a compact filter of HK(X), it

follows by Lemma 5.1 that there is H ∈ HK(X) such that U = [H) = {J ∈
HK(X) : H ⊆ J}. Since H ∈ U and U is open, there is U ∈ K such that

H ∈ ΨU ⊆ U . It follows that H = U . Hence U = [U) = ΨU . □ □

Proposition 5.8. The space ⟨HK(X), τHMS⟩ is sober.

Proof. Let F be a completely prime filter of the lattice of open subsets of the

space HK(X). We need to prove that there exists an element H ∈ HK(X)

such that F = N(H) = {U ∈ τHMS : H ∈ U}. Let D := {U ∈ K : ΨU ∈ F}.
Let H =

⋃
D ∈ HK(X).

Let U ∈ N(H). Since U is an open of HK(X), there is U ∈ K such that

H ∈ ΨU ⊆ U . So U ⊆ H =
⋃
D. Since U is a compact open subset of
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X, it follows that there are U1, . . . , Un ∈ D such that U ⊆ U1 ∪ · · · ∪ Un.

Since K is closed under finite unions and F is a filter of the lattice of open

subsets of HK(X), we obtain that U1∪· · ·∪Un ∈ D. Let V := U1∪· · ·∪Un.

Thus U ⊆ V and ΨV ∈ F . So ΨV ⊆ ΨU ⊆ U . Hence, since F is an upset

of HK(X) with respect to the specialization order ⊑ = ⊆, we have U ∈ F .

Therefore, N(H) ⊆ F .

Let now U ∈ F . Since U is open, it follows that U =
⋃

i∈I ΨUi for some

Ui ∈ K. Then, given that F is completely prime, ΨUi ∈ F for some i ∈ I.

Thus Ui ∈ D. It follows that Ui ⊆
⋃

D = H. Thus H ∈ ΨUi ⊆ U , and then

we have H ∈ U . Hence U ∈ N(H). Therefore F ⊆ N(H).

Hence, N(H) = F . Therefore, the space HK(X) is sober. □ □

Thus, putting all these results together, we have proved the following.

Theorem 5.9. For every S-space ⟨X,K⟩, the space ⟨HK(X), τHMS⟩ is an

HMS space.

Notice that to prove the previous theorem is enough that the space ⟨X,K⟩
satisfies only condition (S2). We will use in the next subsections that the

space ⟨X,K⟩ is an S-space.

Remark 5.10. Let ⟨X,K⟩ be an S-space. Recall that the dual semilattice

of ⟨X,K⟩ is S(X) = {U c : U ∈ K}. The dual semilattice of the HMS space

⟨HK(X), τHMS⟩ is KOF(HK(X)) = {ΨU : U ∈ K}. Now it is straightfor-

ward to check that the semilattices S(X) and KOF(HK(X)) are isomorphic

under the map U c 7→ ΨU .

5.2. From HMS spaces to S-spaces. Let ⟨X, τ⟩ be an HMS space. By

[20, Lem. 3.1], we know that ⟨X,⊑⟩ is a complete lattice. We denote by ⊓
and ⊔ the meet and join of X, respectively. Let us denote by M(X) the set

of all meet-irreducible elements of the lattice ⟨X,⊓,⊔⟩.
By [20, Theo. 3.7], the map θ : X → Fi(KOF(X)) defined as θ(x) =

{U ∈ KOF(X) : x ∈ U} is a homeomorphism. Then, it is clear that x ⊑
y ⇐⇒ θ(x) ⊆ θ(y). Thus, θ is a lattice isomorphism from ⟨X,⊑⟩ onto

⟨Fi(KOF(X)),⊆⟩.

Lemma 5.11. Let ⟨X, τ⟩ be an HMS space. Then, for every x ∈ X that is

not the top, we have x = ⊓{y ∈ M(X) : x ⊑ y}.

Proof. It follows from Corollary 2.2. □ □
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Lemma 5.12. Let ⟨X, τ⟩ be an HMS space. Then, for every x ∈ X and

U ∈ KOF(X), x ∈ U ⇐⇒ [x) ∩M(X) ⊆ U .

Proof. Recall that the opens are upsets regarding ⊑. So, x ∈ U implies

[x)∩M(X) ⊆ U . Now suppose that [x)∩M(X) ⊆ U . Since U ∈ KOF(X),

there is a ∈ X such that U = [a). By Lemma 5.11, a ⊑ ⊓{y ∈ M(X) : x ⊑
y} = x. Thus x ∈ U . □ □

Proposition 5.13. Let ⟨X, τ⟩ be an HMS space. For all U, V ∈ KOF(X),

we have

U ∩M(X) ⊆ V ∩M(X) ⇐⇒ U ⊆ V.

Proof. Let U, V ∈ KOF(X). The implication from right to left is trivial.

Assume that U ∩ M(X) ⊆ V ∩ M(X). Let x ∈ U . By Lemma 5.11, we

have x = ⊓{y ∈ M(X) : x ⊑ y}. Since U is an upset with respect to ⊑, it

follows that {y ∈ M(X) : x ⊑ y} ⊆ U . Thus {y ∈ M(X) : x ⊑ y} ⊆ V .

Given that V ∈ KOF(X), there is a ∈ X such that V = [a). Then, we get

x = ⊓{y ∈ M(X) : x ⊑ y} ∈ [a) = V . Hence U ⊆ V . □ □

Lemma 5.14. Let ⟨X, τ⟩ be an HMS space. Then, every finite element

a ∈ X is a compact element of the lattice ⟨X,⊑⟩.

Proof. Let a ∈ X be finite. Suppose that a ⊑
⊔

i∈I xi. Since θ is a lattice

isomorphism from X onto Fi(KOF(X)), it follows that

θ(a) ⊆ θ
(⊔

xi

)
=

∨
θ(xi) = FigKOF (X)

(⋃
θ(xi)

)
.

As a is finite, we have [a) ∈ θ(a). Thus [a) ∈ FigKOF(X) (
⋃
θ(xi)). Then,

there are i1, . . . , in ∈ I such that [xi1) ∩ · · · ∩ [xin) ⊆ [a). Hence a ⊑
xi1 ⊔ · · · ⊔ xin . Therefore a is a compact element of the lattice X. □ □

Definition 5.15. Let ⟨X, τ⟩ be an HMS space. We define a topology on

M(X) generated by the family KM(X) = {U c ∩M(X) : U ∈ KOF(X)}.

Notice that U c means X \U . Thus U c ∩M(X) = M(X) \U . From now

on, ⟨X, τ⟩ will be an HMS space and ⟨M(X),KM(X)⟩ will be the topological
space defined as above.

Since the space ⟨X, τ⟩ is T0, it follows that ⟨M(X),KM(X)⟩ is also a

T0-space.

Proposition 5.16. The family KM(X) is a subbase of compact open subsets,

it is closed under finite unions and ∅ ∈ KM(X).
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Proof. By definition, it is obvious that KM(X) is a subbase for the space

M(X). Since X ∈ KOF(X) and KOF(X) is closed under finite intersection,

it follows that ∅ ∈ KM(X) and KM(X) is closed under finite unions. Let

U ∈ KOF(X). Let us prove that U c ∩ M(X) is a compact subset of the

space ⟨M(X),KM(X)⟩. Suppose that

U c ∩M(X) ⊆
⋃
i∈I

U c
i ∩M(X).

Then,
⋂

i∈I Ui ∩ M(X) ⊆ U ∩ M(X). As U,Ui ∈ KOF(X), for all i ∈ I,

then U = [a) and Ui = [ai), for some finite elements a, ai ∈ X, ∀i ∈ I.

Thus
⋂

i∈I [ai) ∩ M(X) ⊆ [a) ∩ M(X). By Lemma 5.11, it follows that

a ⊑
⊔

i∈I ai. Since a is a finite element, we have by Lemma 5.14 that there

are i1, . . . , in ∈ I such that a ⊑ ai1 ⊔ · · · ⊔ ain . Thus [ai1) ∩ · · · ∩ [ain) ⊆ [a).

That is, Ui1 ∩ · · · ∩ Uin ⊆ U . Then

U c ∩M(X) ⊆ (U c
i1 ∩M(X)) ∪ · · · ∪ (U c

in ∩M(X)).

Hence U c ∩M(X) is a compact subset of the space M(X). □ □

Proposition 5.17. The space ⟨M(X),KM(X)⟩ satisfies condition (S3) of

Definition 3.5.

Proof. Given that θ : X → Fi(KOF(X)) is a lattice isomorphism, notice that

for every y ∈ M(X), θ(y) is an irreducible filter of the semilattice KOF(X).

Let now U, V ∈ KOF(X) and y ∈ (U c ∩ M(X)) ∩ (V c ∩ M(X)). Thus,

U, V /∈ θ(y). By Lemma 2.3, there are W,D ∈ KOF(X) such that D /∈ θ(y),

W ∈ θ(y) and, U ∩W ⊆ D and V ∩W ⊆ D. Thus

Dc ∩M(X) ⊆ [(U c ∩M(X)) ∩ (V c ∩M(X))] ∪ (W c ∩M(X))

and, y ∈ Dc ∩M(X) and y /∈ W c ∩M(X). □ □

Remark 5.18. From the above results, we know that the space ⟨M(X),KM(X)⟩
satisfies conditions (S1)-(S3). Since KM(X) = {(X \ U) ∩ M(X) : U ∈
KOF(X)}, it is clear that

S(M(X)) = {M(X) \ [(X \ U) ∩M(X)] : U ∈ KOF(X)}

= {U ∩M(X) : U ∈ KOF(X)}.

Hence, by Proposition 5.13, it follows that the two semilattices ⟨KOF(X),∩⟩
and ⟨S(M(X)),∩⟩ are isomorphic.

Proposition 5.19. The space ⟨M(X),KM(X)⟩ satisfies condition (S4).
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Proof. In order to prove that the spaceM(X) satisfies condition (S4), we are

going to appeal to Proposition 3.8. Recall that the map HM(X) : M(X) →
X(S (M(X))) is defined by HM(X)(y) = {A ∈ S (M(X)) : y ∈ A}. We need

to prove that HM(X) is onto. Let P ∈ X(S(M(X))). Consider P̂ = {U ∈
KOF(X) : U∩M(X) ∈ P}. Since P is an irreducible filter of the semilattice

S(M(X)), it follows that P̂ is an irreducible filter of the semilattice KOF(X).

Given that θ : X → Fi(KOF(X)) is a lattice isomorphism, we get that there

is y ∈ M(X) such that θ(y) = P̂ . Thus, it follows that HM(X)(y) =

P . □ □

From the above results we can conclude the following.

Theorem 5.20. For every HMS space ⟨X, τ⟩, ⟨M(X),KM(X)⟩ is an S-

space.

5.3. The equivalence between S-spaces and HMS spaces. Let ⟨X,K⟩
be an S-space. Recall that its dual HMS space is ⟨H(X), τHMS⟩ where

H(X) = {
⋃
U : U ⊆ K}, KOF(H(X)) = {ΨU : U ∈ K} and ΨU = {H ∈

H(X) : U ⊆ H}. Now the dual S-space of H(X) is ⟨M(H(X)),KM(H(X))⟩
where KM(H(X)) = {Ψc

U ∩M(H(X)) : U ∈ K}.

Proposition 5.21. Let ⟨X,K⟩ be an S-space. Then, the function ΓX : X →
M(H(X)) defined by ΓX(x) =

⋃
{U ∈ K : x /∈ U} is a homeomorphism such

that KM(H(X)) = {ΓX [U ] : U ∈ K}.

Proof. Let us take into account the following. (i) HX : X → X(S(X)) given

by HX(x) = {A ∈ S(X) : x ∈ A} is a homeomorphism. (ii) The map⋂
: Fi(S(X)) → CK(X) given by YF =

⋂
F ∈ CK(X) is a dual isomorphism

(Prop. 3.2). (iii) The map (.)c : CK(X) → H(X) given by Y c =
⋃
{U ∈ K :

Y ⊆ U c} is a dual isomorphism.

From (ii) and (iii), we obtain that (.)c ◦
⋂
: X(S(X)) → M(H(X)) is a

bijective function. Then, it follows by (i) that the map (.)c ◦
⋂
◦HX : X →

M(H(X)) is a bijection, and ΓX(x) = ((.)c ◦
⋂

◦HX)(x), for all x ∈ X.

Moreover, for every U ∈ K, we have Γ−1
X [Ψc

U ∩M(H(X))] = U . The result

follows. □ □

Corollary 5.22. Let ⟨X,K⟩ be an S-space. Then, the relation ηX ⊆ X ×
M(H(X)) defined by (x,ΓX(x)) ∈ ηX ⇐⇒ ΓX(x) ⊆ ΓX(y) is an isomor-

phism of the category S.

Let ⟨X, τ⟩ be an HMS space. Recall that its dual S-space is ⟨M(X),KM(X)⟩
whereM(X) is the set of meet-irreducible elements of ⟨X,⊓,⊔⟩ andKM(X) =
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{U c ∩ M(X) : U ∈ KOF(X)}. Now, the dual HMS space of M(X) is

⟨H(M(X)), τHMS⟩ where H(M(X)) is the collection of all arbitrary unions

of KM(X), and thus KOF(H(M(X))) = {ΨUc∩M(X) : U ∈ KOF(X)}.

Proposition 5.23. Let ⟨X, τ⟩ be an HMS space. Then, the map ∆X : X →
H(M(X)) defined by

∆X(x) =
⋃

{U c ∩M(X) : U ∈ KOF(X) and x ∈ U}

is a homeomorphism such that ∆X [KOF(X)] = KOF(H(M(X)).

Proof. Let x1, x2 ∈ X. Assume that ∆X(x1) = ∆X(x2). Suppose that

x1 ̸⊑ x2. So, by Lemma 5.11, there is y ∈ M(X) such that x2 ⊑ y and

x1 ̸⊑ y. Thus y ∈ ∆X(x1) and y /∈ ∆X(x2), a contradiction. Hence ∆X

is injective. We prove that ∆X is onto. Let H ∈ H(M(X)). Thus H =⋃
{U c ∩ M(X) : U ∈ KOF(X) and U c ∩ M(X) ⊆ H}. Let FH = {U ∈

KOF(X) : U c ∩M(X) ⊆ H}. It follows that FH ∈ Fi(KOF(X)). Then, by

Theorem 5.3, there is x ∈ X such that FH = θ(x) = {U ∈ KOF(X) : x ∈ U}.
Hence ∆X(x) = H. Thus ∆X is onto. Now, it is not hard to show that for

every U ∈ KOF(X), U = ∆−1
X [ΨUc∩M(X)]. Thus, since the compact open

filters form bases for the spaces X and H(M(X)), we obtain that ∆X is

continuous and open. This completes the proof. □ □

We now turn our attention to morphisms. Recall that SS denotes the

category of S-spaces and meet-relations.

Let X1 and X2 be HMS spaces. A function f : X1 → X2 is said to be

F-continuous ([20]) if {f−1[V ] : V ∈ KOF(X2)} ⊆ KOF(X1). Let us denote

by HMS the category of HMS spaces and F-continuous functions.

Let X1 and X2 be HMS spaces and f : X1 → X2 an F-continuous map.

We define the relation Rf ⊆ M(X1)×M(X2) as follows:

(y1, y2) ∈ Rf ⇐⇒ f(y1) ⊑ y2

for all y1 ∈ M(X1) and y2 ∈ M(X2). Notice that for every y ∈ M(X1),

Rf (y) = {y2 ∈ M(X2) : f(y) ⊑ y2} = [f(y)) ∩ M(X2). Thus, by Lemma

5.11, ⊓ (Rf (y)) = f(y).

Proposition 5.24. Rf is a meet-relation.

Proof. We need to prove conditions (R1) and (R2) of Definition 3.14. Let

B ∈ S(M(X2)). So, there is V ∈ KOF(X2) such that B = V ∩ M(X2)

(see Remark 5.18). Since V ∈ KOF(X2) and f is F-continuous, we have



A CATEGORICAL DUALITY FOR SEMILATTICES AND LATTICES 27

f−1[V ] ∈ KOF(X1), and thus f−1[V ] ∩M(X1) ∈ S(M(X1)). Let us show

that □Rf
(V ∩M(X2)) = f−1[V ]∩M(X1). Recall that □Rf

(V ∩M(X2)) =

{y ∈ M(X1) : Rf (y) ⊆ V ∩M(X2)}. By Lemma 5.12, we have

y ∈ □Rf
(V ∩M(X2)) ⇐⇒ Rf (y) ⊆ V ⇐⇒ f(y) ∈ V ⇐⇒ y ∈ f−1[V ]∩M(X1).

Hence (R1) holds. Moreover, it is straightforward to show that for every

y ∈ M(X1), Rf (y) =
⋂
{B ∈ S(M(X2)) : Rf (y) ⊆ B}. Hence (R2) holds.

□ □

From the proof of Proposition 5.24, we have that for every F-continuous

map f : X1 → X2, □Rf
(V ∩ M(X2)) = f−1[V ] ∩ M(X1), for all V ∈

KOF(X2).

Proposition 5.25. Let f : X1 → X2 and g : X2 → X3 be F-continuous

maps. Then Rg◦f = Rg ∗Rf .

Proof. Since Rg◦f and Rg ∗ Rf are meet-relations, it is enough by Lemma

3.21 to show that □Rg◦f = □Rg∗Rf
. Moreover, by Proposition 3.16, we have

□Rg∗Rf
= □Rf

◦□Rf
. Thus, it is enough to show that □Rg◦f = □Rf

◦□Rg .

Recall S(M(X3)) = {W ∩ M(X3) : W ∈ KOF(X3)}. Let W ∈ KOF(X3).

Then,

□Rf

(
□Rg(W ∩M(X3))

)
= □Rf

(
g−1[W ] ∩M(X2)

)
= (g ◦ f)−1[W ] ∩M(X1) = □Rg◦f (W ∩M(X3)). □

□

Let ⟨X1,K1⟩ and ⟨X2,K2⟩ be S-spaces and R ⊆ X1 ×X2 a meet-relation.

We define the map fR : H(X1) → H(X2) as follows:

fR(H) =
⋃

{V ∈ K2 : R
−1[V ] ⊆ H},

for every H ∈ H(X1) and where R−1[V ] = {x ∈ X1 : (∃y ∈ V ) (x, y) ∈ R}.

Remark 5.26. Let V ∈ K2. So V c ∈ S(X2). Since R is a meet-relation, it

follows that □R(V
c) ∈ S(X1). Thus □R(V

c)c ∈ K1. Moreover, it is easy to

check that R−1[V ] = □R(V
c)c. Hence, R−1[V ] ∈ K1, for all V ∈ K2.

Proposition 5.27. The map fR : H(X1) → H(X2) is F-continuous.

Proof. Recall that KOF(H(X2)) = {ΨV : V ∈ K2} and ΨV = {H ∈ H(X2) :

V ⊆ H}. Let V ∈ K2. We know that R−1[V ] ∈ K1, and thus ΨR−1[V ] ∈
KOF(H(X1)). Let us show that f−1

R [ΨV ] = ΨR−1[V ]. Let H ∈ H(X1).
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Notice thatH ∈ f−1
R [ΨV ] ⇐⇒ V ⊆ fR(H). Thus, it is clear that ΨR−1[V ] ⊆

f−1
R [ΨV ]. Suppose now that H ∈ f−1

R [ΨV ]. So V ⊆ fR(H). Since V is

compact, there are V1, . . . , Vn ∈ K2 such that R−1[V1] ∪ · · · ∪ R−1[Vn] ⊆ H

and V ⊆ V1 ∪ · · · ∪ Vn. Then R−1[V ] ⊆ H. Thus H ∈ ΨR−1[V ]. Hence

f−1
R [ΨV ] = ΨR−1[V ] ∈ KOF(H(X1)). □ □

Proposition 5.28. Let R ⊆ X1 ×X2 and S ⊆ X2 ×X3 be meet-relations.

Then, fS∗R = fS ◦ fR.

Proof. Let H ∈ H(X1). By definition, we have fS∗R(H) =
⋃
{W ∈ K3 :

(S ∗R)−1[W ] ⊆ H} and (fS ◦fR)(H) = {W ∈ K3 : S
−1[W ] ⊆ fR(H)}. First

notice that S−1[W ] ⊆ fR(H) ⇐⇒ (S ◦ R)−1[W ] ⊆ H. Now by Remark

5.26 and Proposition 3.16, we have on the one hand

(S ∗R)−1[W ] = □S∗R(W
c)c = (□R ◦□S)(W

c)c = □R(□S(W
c))c,

and the other hand

(S ◦R)−1[W ] = R−1[S−1[W ]] = □R(S
−1[W ]c)c = □R(□S(W

c))c.

Thus (S ∗ R)−1[W ] = (S ◦ R)−1[W ], for all W ∈ K3. Hence fS∗R(H) =

(fS ◦ fR)(H), for all H ∈ H(X1). □ □

In order to prove the next proposition we need to note the following.

By what we have proved in Proposition 5.27, for every meet-relation R ⊆
X1 ×X2, f

−1
R [ΨV ] = ΨR−1[V ], for all V ∈ K2.

Proposition 5.29. Let R ⊆ X1 ×X2 be a meet-relation. Then, ηX2 ∗R =

RfR ∗ ηX1.

Proof. From Lemma 3.21 and Proposition 3.16, it is enough to show that

□ηX1
◦□RfR

= □R ◦□ηX2
. Since RfR ⊆ M(H(X1))×M(H(X2)), it follows

that

□RfR
: S(M(H(X2))) → S(M(H(X1))).

Recall that S(M(H(Xi))) = {ΨU : U ∈ Ki}.
Let V ∈ K2. We need to prove that

(□ηX1
◦□RfR

)(ΨV ∩M(H(X2))) = (□R ◦□ηX2
)(ΨV ∩M(H(X2))).

Let x ∈ (□ηX1
◦□RfR

)(ΨV ∩M(H(X2))). Thus

ηX1(x) ⊆ □RfR
(ΨV ∩M(H(X2))) = f−1

R [ΨV ]∩M(H(X1)) = ΨR−1[V ]∩M(H(X1)).

We have to show that R(x) ⊆ □ηX2
(ΨV ∩M(H(X2))). Let y ∈ R(x). Now

we need to show that ηX2(y) ⊆ ΨV ∩M(H(X2)). Let z ∈ X2 be such that
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ΓX2(z) ∈ ηX2(y). Thus ΓX2(y) ⊆ ΓX2(z). Then z ⊑ y. We have to prove

that ΓX2(z) ∈ ΨV . Notice that ΓX2(z) ∈ ΨV ⇐⇒ V ⊆ ΓX2(z) ⇐⇒ z /∈
V . Now, since ΓX1(x) ∈ ηX1(x) ⊆ ΨR−1[V ], it follows that R

−1[V ] ⊆ ΓX1(x).

Thus x /∈ R−1[V ]. That is R(x) ∩ V = ∅. Since y ∈ R(x), we have y /∈ V .

Hence, we can conclude that R(x) ⊆ □ηX2
(ΨV ∩M(H(X2))), which implies

that x ∈ (□R ◦□ηX2
)(ΨV ∩M(H(X2))).

Now let x ∈ (□R ◦□ηX2
)(ΨV ∩M(H(X2))). Then, it follows that R(x) ⊆

□ηX2
(ΨV ∩M(H(X2))). We need to show that ηX1(x) ⊆ ΨR−1[V ]∩M(H(X1)).

Let x′ ∈ X1 be such that ΓX1(x
′) ∈ ηX1(x). We need to prove that ΓX1(x

′) ∈
ΨR−1[V ]. Notice that ΓX1(x

′) ∈ ΨR−1[V ] ⇐⇒ R−1[V ] ⊆ ΓX1(x
′) ⇐⇒ x′ /∈

R−1[V ]. Suppose that x′ ∈ R−1[V ]. Since ΓX1(x
′) ∈ ηX1(x), we have

ΓX1(x) ⊆ ΓX1(x
′). Then x′ ⊑ x. Now since x′ ∈ R−1[V ] ∈ K1, it follows

that x ∈ R−1[V ]. Thus, there is y ∈ V such that y ∈ R(x). By hypoth-

esis, we have ηX2(y) ⊆ ΨV . Given that ΓX2(y) ∈ ηX2(y) ⊆ ΨV , we have

V ⊆ ΓX2(y). Thus y /∈ V , which is a contradiction. Hence

ηX1(x) ⊆ ΨR−1[V ] ∩M(H(X1)) = □RfR
(ΨV ∩M(H(X2))).

Then, x ∈ (□ηX1
◦□RfR

)(ΨV ∩M(H(X2))). □ □

Finally, we are ready to define the functors between the category SS of

S-spaces and the category HMS of HMS spaces, and prove the main result

of this section.

Let H : SS → HMS be defined as follows:

• for every S-space ⟨X,K⟩, H(X) = ⟨HK(X), τHMS⟩;
• for every meet-relation R ⊆ X1×X2, H(R) = fR : H(X1) → H(X2).

Let M : HMS → SS be defined as follows:

• for every HMS space ⟨X, τ⟩, M(X) = ⟨M(X),KM(X)⟩;
• for every F-continuous map f : X1 → X2, M(f) = Rf ⊆ M(X1) ×
M(X2).

Theorem 5.30. H : SS → HMS and M : HMS → SS establish an equiva-

lence between the categories SS and HMS.

Proof. By Theorem 5.9 and Proposition 5.27, we have that H is well defined.

Recall that the identity morphism in SS is ⊒X , for every S-space X. Thus

f⊒X (H) =
⋃
{U ∈ K : (⊒X)−1[U ] ⊆ H} = H, for all H ∈ H(X). Then,

H(⊒X) = idH(X), for every S-space X. Hence, by Proposition 5.28, we have

that H is a functor.
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By Theorem 5.20 and Proposition 5.24, we have that M is well defined.

Notice that for every HMS space X, M(idX) = RidX = ⊒M(X). Then, by

Proposition 5.25, M is a functor.

From Corollary 5.22, and Propositions 5.29 and 5.23, the corresponding

natural transformations are clear. This completes the proof. □ □
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[6] Celani, S., González, L.J.: A topological duality for mildly distributive meet-

semilattices. Rev. Un. Mat. Argentina 59(2), 265–284 (2018)

[7] Celani, S., Montangie, D.: Hilbert algebras with a modal operator ⋄. Studia Logica

103(3), 639–662 (2015)

[8] Davey, B., Priestley, H.: Introduction to lattices and order. Cambridge University

Press (2002)
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Mathematics. Birkhäuser Basel (2012)

[22] Stone, M.H.: The theory of representation for Boolean algebras. Trans. Amer. Math.

Soc. 40(1), 37–111 (1936)

[23] Urquhart, A.: A topological representation theory for lattices. Algebra Universalis

8(1), 45–58 (1978)

Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Natu-

rales. Santa Rosa, Argentina.

Email address: lucianogonzalez@exactas.unlpam.edu.ar


	1. Introduction
	2. Preliminaries
	3. Topological dualities
	3.1. S-spaces
	3.2. Representation for semilattices
	3.3. Duality for semilattices
	3.4. Topological duality for bounded lattices

	4. DS-spaces and spectral spaces
	5. The representation by Moshier and Jipsen
	5.1. From S-spaces to HMS spaces
	5.2. From HMS spaces to S-spaces
	5.3. The equivalence between S-spaces and HMS spaces

	References

