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A topological duality for posets

Luciano J. González and Ramon Jansana

Abstract. In this paper, we present a topological duality for partially ordered sets.
We use the duality to give a topological construction of the canonical extension of a
poset, and we also topologically represent the quasi-monotone maps, that is, maps
from a finite product of posets to a poset that are order-preserving or order-reversing
in each coordinate.

1. Introduction

The theory of topological duality arose mainly with M.H. Stone’s work

[11] in the mid-thirties of the twentieth century when he developed a duality

between Boolean algebras and a class of topological spaces, later known as

Stone spaces. In the subsequent paper [12], Stone generalizes the previous

duality for Boolean algebras to show that the category of bounded distributive

lattices and lattice homomorphisms is dually equivalent to the category of

spectral spaces and spectral maps. Both topological categories, Stone spaces

and spectral spaces, are subcategories of the category of all topological spaces

and continuous maps. Another classical duality, related to Stone’s, is given

by H.A. Priestley in [10] between the category of bounded distributive lattices

and certain ordered topological spaces, which are known as Priestley spaces.

Unlike Stone’s duality, Priestley spaces are equipped with an additional partial

order on the points in the space.

Lattice Theory, mainly developed by the work of G. Birkhoff in the mid-

thirties of last century, is fundamental in the study of many ordered algebraic

structures and also with regard to the classes of algebras that are associa-

ted with certain logics. Moreover, Lattice Theory is also important in other

branches of mathematics such as Algebra, Computer Science, Domain The-

ory, etc. In the literature, there are several topological dualities for bounded

lattices, for instance in [13], [5], [4] and [8]. In this last paper, Moshier and
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Jipsen give a topological duality for bounded lattices and a topological duality

for meet-semilattices with top element in a way that the corresponding dual

categories are subcategories of the category of topological spaces. Thus, we

can say that their dualities follow the line of Stone’s duality. In [9], Moshier

and Jipsen use the duality developed in [8] to give, in a topological framework,

a characterization of lattice expansions. These are lattices with additional

operations that are order-preserving or order-reversing in each coordinate.

A partially ordered set (poset, for short) is a non-empty set with a binary re-

lation that satisfies the properties of reflexivity, antisymmetry and transitivity.

Posets form a large and general class of ordered structures that encompasses

that of lattices. That is, a lattice can be seen as a poset in which the great-

est lower bound and the least upper bound exist for every pair of elements.

From this point of view we can observe the importance of studying posets in

general and trying to develop for them analogous results to those obtained in

Lattice Theory. This quest has been pursued by many; to name a few, we can

highlight the works of M. Erné (see for example [2] and the references therein)

and recently the extension to posets given in [1] of the theory of the canonical

extension of a lattice.

In this paper, we develop a topological duality for posets. A fundamental

concept to build our duality is the notion of filter of a poset. The notion of filter

of a poset that we take is that of down-directed up-set. We intend that the dual

category of the posets (with the maps that are order-preserving and such that

the inverse image of a filter is a filter as the morphisms) form a subcategory of

the category of topological spaces, and that our duality generalizes the duality

given by Moshier and Jipsen for bounded lattices.

The dual spaces of posets will be the sober spaces 〈X, τ〉 with the property

that the compact open filters of X with respect to the specialization order

form a base for the topology τ . We call these spaces P-spaces. The duals of

the morphisms between posets of our category will be the continuous functions

with the property that the inverse image of a compact open filter is a compact

open filter. We will call such functions F-continuous maps.

The paper is organized as follows. In Section 2, we introduce the basic

concepts related to posets and topological spaces we need. In Section 3, we

review the concepts of Scott space and sober space. Sections 4 and 5 are

devoted first to the representation of the posets by means of P-spaces and

then to the duality between the category of posets and the category of P-

spaces with F-continuous maps. In Section 6, we apply our duality to obtain

a topological proof of the existence of the canonical extension of a poset as

defined in [1]. This is the parallel result, but with a different kind of proof,

to the topological proof of the existence of the canonical extension of a lattice

provided in [8]. Section 7 analyses the dual space of the dual poset of a given

poset P . Sections 8 and 9 deal with the topological representation of quasi-

monotone maps between posets by maps between their duals, and with related

issues. Finally, in Section 10, we specialize our duality to a duality between
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meet-semilattices and characterize the dual spaces. In this way, we obtain

by further specializing to meet-semilattices with a top element the duality

obtained in [8].

2. Preliminaries

In this section, we provide the basic facts that we need in the paper. Let

P be a poset. A subset X of P is an up-set if for all a, b ∈ P such that

a ∈ X and a ≤ b, it holds that b ∈ X. Dually, we say that a subset X of

P is a down-set if b ∈ X and a ≤ b implies a ∈ X. Let a ∈ P . We define

↑a := {x ∈ P : a ≤ x}; this set is called the principal up-set generated by a.

Dually, we write ↓a := {x ∈ P : x ≤ a}. We say that a subset A of P is

up-directed if for every a, b ∈ A, there exists c ∈ A such that a ≤ c and b ≤ c,

and we say that it is down-directed if for every a, b ∈ A, there exists c ∈ A

such that c ≤ a and c ≤ b. A non-empty subset of P is called a filter if it is a

down-directed up-set and it is called an ideal if it is an up-directed down-set.

We denote by Fi(P ) the collection of all filters of P and by Id(P ) the collection

of all its ideals.

Let X = 〈X, τ〉 be a T0 topological space. The specialization order � of X

is defined as follows: a � b ⇐⇒ ∀U ∈ τ(a ∈ U =⇒ b ∈ U). We denote by

� and � the join and meet respectively of the poset 〈X,�〉 when they exist.

For any x ∈ X, we let No(x) := {U ∈ τ : x ∈ U} denote the set of open

neighbourhoods of x. So for all a, b ∈ X, a � b ⇐⇒ No(a) ⊆ No(b).

Any other notions about partially ordered sets that we use on a T0-space

refer to the poset 〈X,�〉. For instance, if U is an open subset of the T0-space

X, then U is an up-set of X, that is, if a � b and a ∈ U , then b ∈ U . Dually,

any closed set is a down-set.

Let 〈X, τ〉 be a T0-space. An element a ∈ X is said to be finite if ↑a is an

open subset of X, and we let Fin(X) := {a ∈ X : ↑a is an open subset of X}.
We denote by OF(X) the family of all open filters of the space X, that is,

F ∈ OF(X) if and only if F is a filter of 〈X,�〉 and F ∈ τ . Also, we define

KOF(X) as the family of all compact open filters of X. It can be proved that

all compact filters of the space X are of the form ↑x for some x ∈ X (that is

therefore finite) and hence we obtain that KOF(X) = {↑a : a ∈ Fin(X)} (for a

proof of these two facts see [8]).

3. Scott spaces and sober spaces

In this section, we present the definitions of, and basic facts about, Scott

and sober spaces. The contents are well known, and so we leave the details to

the reader. References for Scott spaces are [7] and [14], and for sober spaces,

[6] and [7].
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The Scott topology arises in a natural way by means of posets. Here we

choose to give an abstract definition of Scott spaces and we show the intrinsic

connection with posets.

Definition 3.1. A topological space 〈X, τ〉 is said to be Scott if:

(1) X is T0;

(2) for every subset U of X, U is open if and only if U is an up-set and it

is inaccessible by up-directed joins (with respect to �). That is, for each

up-directed D ⊆ X, if
⊔↑

D ∈ U , then U ∩D �= ∅.

In the previous definition, by
⊔↑

D ∈ U we mean that D is an up-directed

subset and the join of D in the poset 〈X,�〉 exists and belongs to U . We keep

in mind this convention throughout the paper.

Example 3.2. Let 〈P,≤〉 be a poset. The Scott topology on P determined

by the order ≤ is the collection τP of all subsets U of P that are up-sets and

inaccessible by up-directed joins with respect to ≤. So it is clear that 〈P, τP 〉
is a Scott space. Moreover, ≤ is its specialization order �.

Proposition 3.3. Let X and Y be Scott spaces and f : X → Y a func-

tion. Then, f is continuous if and only if f preservers up-directed joins, i.e.,

f(
⊔↑

D) =
⊔↑

f [D].

We denote by P⇑ the category whose objects are all posets and whose mor-

phisms are all the functions between posets that preserve up-directed joins

and by TOP(S) we denote the category of all Scott spaces and all continuous

functions between them.

Proposition 3.4. The categories P⇑ and TOP(S) are isomorphic via the fol-

lowing functors:

(1) Γ: P⇑ → TOP(S) where
• Γ(P ) := 〈P, τP 〉 for every poset P ;

• for every morphism f : P → Q of P⇑, Γ(f) : Γ(P ) → Γ(Q) is given by

Γ(f) = f .

(2) ∆: TOP(S) → P⇑ where

• ∆(X) := 〈X,�〉 for every Scott space X;

• for every morphism f : X → Y of TOP(S), ∆(f) : ∆(X) → ∆(Y ) is

defined by ∆(f) = f .

Definition 3.5. A topological space 〈X, τ〉 is sober if X is T0 and for every

completely prime filter F of the lattice of open subsets of X, there exists an

element x ∈ X such that F = {U ∈ τ : x ∈ U} = No(x).

The sobriety condition for topological spaces is a kind of separation axiom

where its position in the separation hierarchy is
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T1

T2 T0

sober

Let X be a topological space and A ⊆ X. We say that A is irreducible if

for all closed subsets B,C of X, A ⊆ B or A ⊆ C whenever A ⊆ B ∪ C. The

following two propositions are useful for working with sober spaces.

Proposition 3.6. A topological space X is sober if and only if each closed

irreducible subset of X is of the form ↓x for a unique point x.

Proposition 3.7. Let X be a sober space.

(1) Every up-directed subset D of X has a join
⊔↑

D.

(2) If U is an open subset of X, then U is inaccessible by up-directed joins.

(3) Every continuous function f between sober spaces preserves up-directed

joins, that is, f(
⊔↑

D) =
⊔↑

f [D].

4. Topological representation of posets

In this section, we present a topological representation theorem for posets

via a particular class of topological spaces. These topological spaces are Scott

spaces built by means of posets. Our main purpose in this part is to generalize

the topological representation for lattices and meet-semilattices given in [8] to

posets. For this, we apply the underlying idea in [8] in a more general context.

Let P be a poset. Let us consider the poset 〈Fi(P ),⊆〉 and define the

topological space 〈Fi(P ), τFi(P )〉 where τFi(P ) is the Scott topology of the poset

Fi(P ) (see Example 3.2). For short, we write XP := 〈Fi(P ), τFi(P )〉. It should

be noted that the specialization order � of the space XP is the order of inclu-

sion ⊆. That is, for all F,G ∈ Fi(P ), F � G if and only if F ⊆ G. For every

a ∈ P , we define the set ϕa := {F ∈ Fi(P ) : a ∈ F}.
The proofs of the following two propositions are similar to the ones given

for the analogous facts in the case of meet-semilattices with a top element in

[8]. We give more details here than in [8], because we work in the more general

setting of posets.

Proposition 4.1. The family {ϕa : a ∈ P} is a base for the space XP .

Proof. We prove this proposition in two steps. Let a ∈ P . It is clear that ϕa

is an up-set (of the poset 〈Fi(P ),⊆〉). Let A be an up-directed collection of

filters of P and suppose that
∨↑A ∈ ϕa. Since A is an up-directed family of

filters of P with respect to the inclusion order, we have that
∨↑A =

⋃
A. So

a ∈
⋃
A. This implies that there exists F ∈ A such that a ∈ F , and thus

F ∈ ϕa. Then ϕa ∩ A �= ∅. Hence, ϕa is a Scott open of the space XP .
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Now we will prove that the family {ϕa : a ∈ P} is a base for the space XP .

Let U ⊆ Fi(P ) be a Scott open set of XP and let F ∈ U . Let us take the set

D := {↑a : a ∈ F}. D is an up-directed subset of Fi(P ) because F is a filter of

P . So F =
⋃
D =

∨↑D ∈ U and, since U is Scott open, we obtain U ∩D �= ∅.
Hence, there is a ∈ F such that ↑a ∈ U . This implies that F ∈ ϕa ⊆ U . �

Proposition 4.2. For every a ∈ P , ϕa is a compact open filter of XP .

Proof. Let a ∈ P . From the previous proposition, we know that ϕa is open.

Moreover, clearly, ϕa is a filter ofXP . Now let us prove that ϕa is compact. Let

{Ui : i ∈ I} be a family of open subsets of XP and suppose that ϕa ⊆
⋃

i∈I Ui.

Since ↑a ∈ ϕa, ↑a ∈
⋃

i∈I Ui. So for some i ∈ I, ↑a ∈ Ui. As Ui is open and

the specialization order in XP is ⊆, we have ϕa ⊆ Ui. �

We provide a characterization of the posets P whose space XP is compact.

In particular, it turns out that if P has a top element, then the space XP is

compact.

Proposition 4.3. The space XP is compact if and only if the set of maximal

elements of P is finite and for every a ∈ P there exists a maximal element

b ∈ P such that a ≤ b.

Proof. Suppose that the set max(P ) of maximal elements of P is finite and

for every a ∈ P , there exists a maximal element b ∈ P such that a ≤ b. Let

us consider a cover {ϕa : a ∈ Z} of XP by basic open sets. Let b ∈ max(P ).

Then {b} is a filter of P . Therefore, {b} ∈ ϕa for some a ∈ Z, and then a = b.

It follows that max(P ) ⊆ Z. Now, since by assumption for every a ∈ P there

exists b ∈ max(P ) such that a ≤ b, we obtain that {ϕb : b ∈ max(P )} is a

finite subcover of {ϕa : a ∈ Z}. We conclude that XP is compact.

Conversely, assume that XP is compact and the set of maximal elements

of P is infinite or there exists a ∈ P such that for no b ∈ max(P ), a ≤ b. If

max(P ) is infinite, then {ϕb : b ∈ max(P )} ∪ {ϕa : ∀b ∈ max(P ), a �≤ b} is a

cover of XP without any finite subcover. Now suppose a0 ∈ P is such that for

no b ∈ max(P ) is a0 ≤ b. Then there exists a strictly increasing infinite chain

a0 < a1 < · · · < an < an+1 < · · · . So {ϕan
: n ∈ ω} ∪ {ϕa : ∀n ∈ ω, a �≤ an}

is a cover of XP and has no finite subcover. �

Proposition 4.2 tells us that {ϕa : a ∈ P} ⊆ KOF(XP ). We next prove that

all compact open filters of the space XP are of the form ϕa for some a ∈ P .

Then applying Proposition 4.1, we have that KOF(XP ) is a base for XP .

Proposition 4.4. For every compact open filter U of XP , there is a ∈ P such

that U = ϕa.

Proof. Let U ∈ KOF(XP ). Since U is a compact filter, it is of the form

U = {G ∈ Fi(P ) : F ⊆ G} for some F ∈ Fi(P ). Let D := {↑a : a ∈ F}, and so

D is an up-directed family of filters of P . Then
∨
D =

⋃
D = F ∈ U . As U is
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a Scott open, U ∩ D �= ∅. Thus, there exists a ∈ F such that ↑a ∈ U . Then

we obtain that F = ↑a, and hence

U = {G ∈ Fi(P ) : ↑a ⊆ G} = {G ∈ Fi(P ) : a ∈ G} = ϕa. �

Therefore, bringing together the above results, we have that KOF(XP ) =

{ϕa : a ∈ P}. Let us consider on KOF(XP ) the inclusion order ⊆. We can now

present the main result of this section, namely the representation theorem for

posets.

Theorem 4.5. Let P be a poset. The map ϕ : P → KOF(XP ), defined by

ϕ(a) = ϕa for all a ∈ P , is an order isomorphism.

Proof. By Proposition 4.4, the map ϕ is onto. Let a, b ∈ P and a �= b. Suppose

a � b. So ↑a ∈ ϕa \ ϕb, and hence ϕ is injective. Let a, b ∈ P . Then we have

a ≤ b ⇐⇒ ∀F ∈ Fi(P )(a ∈ F =⇒ b ∈ F ) ⇐⇒ ϕa ⊆ ϕb ⇐⇒ ϕ(a) ⊆ ϕ(b).

Therefore, ϕ is an order isomorphism from P onto KOF(XP ). �

Remark 4.6. Let P be a poset and a, b, c ∈ P . Note that ϕc = ϕa∩ϕb if and

only if the greatest lower bound of a, b exists and is c. Thus, in P the greatest

lower bound of any two elements exists if and only if U ∩ V ∈ KOF(XP ) for

every U, V ∈ KOF(XP ). Also note that P has a top element if and only if

XP ∈ KOF(XP ).

5. Duality

In the first part of this section, we define the topological spaces that will

be the duals of the posets in the categorical duality that we want to estab-

lish. These spaces should be an abstract characterization of the spaces XP

constructed by means of posets P as in the previous section. A topological

space X dual to a poset should be such that KOF(X) is a base for the space.

Moreover, we observe that the spaces XP have very nice properties with re-

spect to the specialization order. Since our duality is a kind of Stone duality,

it is natural to expect that the spaces we consider will be sober. We begin by

giving the following definition.

Definition 5.1. A topological space 〈X, τ〉 is a P-space if it satisfies the

following conditions:

(P1) X is a sober space;

(P2) KOF(X) is a base for τ .

The notion of P-space is a direct generalization of the notion of HMS-

space introduced in [8]. HMS-spaces are duals of meet-semilattices with a top

element. We will discuss HMS-spaces in Section 10. The following proposition,

which is a characterization of P-spaces, can be useful to show that certain

topological spaces are P-spaces.
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Proposition 5.2. Let X be a topological space. Then, X is a P-space if and

only if the following conditions are satisfied:

(i) X is a Scott space;

(ii) KOF(X) is a base for X;

(iii) every up-directed subset of X (with respect to �) has a join.

Proof. First, we assume that X is a P-space and we prove that the three

conditions above hold.

(i): Since X is sober, it is a T0-space. Let U be an open set. Then U is

an up-set of X and by Proposition 3.7, U is inaccessible by up-directed joins.

Now let U be an up-set of X that is inaccessible by up-directed joins. Let

x ∈ U . The set D := {a ∈ Fin(X) : a � x} is up-directed and non-empty

because KOF(X) is a base for X. Then, since X is sober, there exists
⊔↑

D.

Let us see that x =
⊔↑

D. It is clear that
⊔↑

D � x. To prove the reverse

inequality, we use the fact that KOF(X) is a base. Let ↑b ∈ KOF(X) be such

that x ∈ ↑b. So b � x, and thus b ∈ D. Then b �
⊔↑

D, which implies that⊔↑
D ∈ ↑b. Then x �

⊔↑
D. Thus, we have that

⊔↑
D = x ∈ U , and since U is

inaccessible by up-directed joins, D ∩ U �= ∅. Hence, there is a ∈ D such that

a ∈ U . Consequently, a ∈ Fin(X) and a � x, and hence x ∈ ↑a. So we obtain

that x ∈ ↑a ⊆ U , which implies that U is an open set of X. Therefore, X is a

Scott space.

(ii): By hypothesis, KOF(X) is a base for X.

(iii): By Proposition 3.7, every up-directed subset of X has a join.

Now we assume that X satisfies the three conditions of the proposition. We

need only to prove that X is sober. Since X is a Scott space, X is T0. Let A be

a completely prime filter of the lattice of open sets. LetD := {a ∈ X : ↑a ∈ A}.
Since A is a filter, there exists U ∈ A. So U =

⋃
i∈I ↑ai for some family

{ai : i ∈ I} ⊆ Fin(X). As
⋃

i∈I ↑ai ∈ A and A is completely prime, there

exists i0 ∈ I such that ↑ai0 ∈ A. So ai0 ∈ D. Thus, D is non-empty.

Let us see that D is an up-directed subset of X. Let a, b ∈ D. Since A is

a filter, ↑a ∩ ↑b ∈ A. As ↑a ∩ ↑b is open, ↑a ∩ ↑b =
⋃

j∈J ↑cj for some family

{cj : j ∈ J} ⊆ Fin(X). Hence, ↑cj0 ∈ A for some j0 ∈ J . Thus, cj0 ∈ D,

a � cj0 , and b � cj0 ; hence, D is up-directed. By condition (iii), let x :=
⊔↑

D.

We show that No(x) = A. Let U ∈ No(x). So x ∈ U , and this implies that⊔↑
D ∈ U . By condition (i), we have that D ∩ U �= ∅, and hence there exists

some a ∈ D ∩ U . Since U is an up-set of X, ↑a ⊆ U . As a ∈ D, ↑a ∈ A, and

then U ∈ A. Hence, No(x) ⊆ A. Conversely, let U ∈ A. So U =
⋃

i∈I ↑ai
where ↑ai ∈ KOF(X) for each i ∈ I. Since A is completely prime, there exists

i ∈ I such that ↑ai ∈ A. Thus, ai ∈ D. This implies that ai � x. Then x ∈ U

because ai ∈ U . Hence, U ∈ No(x). Therefore, A ⊆ No(x). �

Theorem 5.3. Let P be a poset. Then, XP is a P-space.

Proof. By definition, the space XP is a Scott space. From Propositions 4.1

and 4.2, KOF(XP ) is a base for XP . Lastly, since the specialization order � of
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XP is the inclusion order, it is clear that the joins of all up-directed subsets of

XP exist. Then the three conditions (i)–(iii) of Proposition 5.2 are satisfied,

and therefore XP is a P-space. �

Let X be a topological space. We denote the poset 〈KOF(X),⊆〉 by PX .

Using the construction of the previous section, we obtain the space XPX
:=

〈Fi(PX), τPX
〉.

Theorem 5.4. Let X be a P-space. Then X is homeomorphic to XPX
.

Proof. We define the map θ : X → XPX
by θ(x) := {U ∈ KOF(X) : x ∈ U}

for each x ∈ X. We show that θ is a homeomorphism in several steps.

• θ is well defined. Let x ∈ X. It is clear that θ(x) is an up-set of PX =

〈KOF(X),⊆〉. Let U1, U2 ∈ θ(x). So x ∈ U1 ∩ U2, and since U1 ∩ U2 is open,

there exists U3 ∈ KOF(X) such that x ∈ U3 ⊆ U1 ∩ U2. Then U3 ∈ θ(x) and

U3 ⊆ U1, U2. Hence, θ(x) is a filter of the poset PX .

• θ is injective. Let x, y ∈ X and suppose that x �� y. Since KOF(X) is

a base for X, there exists U ∈ KOF(X) such that x ∈ U and y /∈ U . Then

θ(x) � θ(y).

• θ is onto. Let F ∈ XPX
= Fi(PX). Let D := {a ∈ X : ↑a ∈ F}. As F is a

filter of PX , D is an up-directed subset of X. Then since X is a P-space, there

exists x :=
⊔↑

D. We want to show that θ(x) = F . Let ↑a ∈ F . So a ∈ D, and

then x ∈ ↑a. This implies that ↑a ∈ θ(x). Now let ↑a ∈ θ(x). By definition of

θ and since x =
⊔↑

D, it follows that
⊔↑

D ∈ ↑a. As X is a P-space, the open

subsets of X are inaccessible by up-directed joins, and so D ∩ ↑a �= ∅. Then

there exists d ∈ D∩↑a. Since F is a filter, ↑d ⊆ ↑a and ↑d ∈ F ; it follows that

↑a ∈ F . Therefore, F = θ(x).

• θ is continuous. Let ϕU be a basic open set of the space XPX
. Recall

that for U ∈ PX = KOF(X), we have ϕU = {F ∈ Fi(PX) : U ∈ F}. For every
x ∈ X, we have

x ∈ θ−1[ϕU ] ⇐⇒ θ(x) ∈ ϕU ⇐⇒ U ∈ θ(x) ⇐⇒ x ∈ U.

Then θ−1[ϕU ] = U is an open set of X, and therefore θ is continuous.

• θ is an open map. Let U ∈ KOF(X). We show that θ[U ] = ϕU . Let

F ∈ θ[U ]. So there is x ∈ U such that θ(x) = F . Since x ∈ U , F ∈ ϕU . Now

let F ∈ ϕU . So U ∈ F . Since θ is onto, there exists x ∈ X such that θ(x) = F .

As U ∈ F = θ(x), x ∈ U . Then F ∈ θ[U ].

Therefore, from all these points, we can conclude that θ is a homeomor-

phism. �

Let us denote by P the category whose objects are posets and whose mor-

phisms are the order-preserving maps between posets and such that the inverse

image of a filter is a filter. That is, j : P → Q is a morphism of P if it is an

order-preserving map and for all G ∈ Fi(Q), j−1(G) ∈ Fi(P ). A function

f : X → Y from the P-space X to the P-space Y is called F-continuous if for

all U ∈ KOF(Y ), we have that f−1(U) ∈ KOF(X). When this condition holds,
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we say that f−1 preserves compact open filters. By TOP(P ), we denote the ca-

tegory of P-spaces and F-continuous functions. Note that every F-continuous

map between P-spaces is continuous.

Now, we extend the representation theorem for posets to a duality between

the categories P and TOP(P ).

Theorem 5.5. The categories P and TOP(P ) are dually equivalent via the

following functors:

(1) Γ: P → TOP(P ) defined by

• Γ(P ) := XP , for each poset P ;

• for every morphism j : P → Q of P, Γ(j) : XQ → XP is given by

Γ(j) := j−1.

(2) ∆: TOP(P ) → P defined by

• ∆(X) := PX , for each P-space X;

• for every morphism f : X → Y of TOP(P ), ∆(f) : PY → PX is given

by ∆(f) := f−1.

Proof. (1): Let j : P → Q be a morphism of P. We need to show that Γ(j) =

j−1 : XQ → XP is F-continuous. Let U ∈ KOF(XP ). By Proposition 4.4,

there is a ∈ P such that U = ϕa. Then we have

G ∈ Γ(j)−1[ϕa] ⇐⇒ Γ(j)(G) ∈ ϕa ⇐⇒ j−1(G) ∈ ϕa

⇐⇒ a ∈ j−1(G) ⇐⇒ j(a) ∈ G ⇐⇒ G ∈ ϕj(a).

Hence, Γ(j)−1[ϕa] = ϕj(a) ∈ KOF(XQ).

(2): Let f : X → Y be a morphism of the category TOP(P ). Since ∆(f) =

f−1, it is clear that ∆(f) is an order-preserving map from PY to PX . Now let

F ∈ Fi(PX). From Theorem 5.4, we know that F = θ(x) for some x ∈ X. Let

U ∈ KOF(Y ). Then

U ∈ ∆(f)−1[F ] ⇐⇒ ∆(f)(U) ∈ F = θ(x)

⇐⇒ f−1(U) ∈ θ(x) ⇐⇒ f(x) ∈ U ⇐⇒ U ∈ θ(f(x)).

Hence, we obtain that ∆(f)−1[F ] = θ(f(x)) ∈ Fi(PY ). Thus, ∆(f) is a mor-

phism of P. To conclude the proof, we need to show that for every morphism

j : P → Q of P and every morphism f : X → Y of TOP(P ), the following

diagrams commute:

P Q

KOF(XP ) KOF(XQ)

ϕ

j

∆(Γ(j))

ϕ

X Y

XPX
XPY

θ

f

Γ(∆(f))

θ
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Let a ∈ P and F ∈ Fi(Q). Then we have

F ∈ (∆(Γ(j)) ◦ ϕ)(a) ⇐⇒ F ∈ Γ(j)−1[ϕ(a)] ⇐⇒ Γ(j)(F ) ∈ ϕ(a)

⇐⇒ j−1(F ) ∈ ϕ(a) ⇐⇒ a ∈ j−1(F )

⇐⇒ j(a) ∈ F ⇐⇒ F ∈ ϕ(j(a)).

Hence, ∆(Γ(j)) ◦ ϕ = ϕ ◦ j.
Finally, let x ∈ X and U ∈ KOF(Y ). Then

U ∈ Γ(∆(f))(θ(x)) ⇐⇒ U ∈ ∆(f)−1[θ(x)] ⇐⇒ ∆(f)(U) ∈ θ(x)

⇐⇒ f−1(U) ∈ θ(x) ⇐⇒ x ∈ f−1(U)

⇐⇒ f(x) ∈ U ⇐⇒ U ∈ θ(f(x)).

Hence, Γ(∆(f)) ◦ θ = θ ◦ f . �

6. Canonical extension for posets

The canonical extension of a poset is introduced in [1, Definition 2.2]. We

recall the definition here.

An extension of poset P is a pair 〈Q, e〉 where Q is a poset and e : P → Q is

an order-embedding, i.e., for every x, y ∈ P , x ≤ y if and only if e(x) ≤ e(y).

A completion of P is an extension 〈Q, e〉 of P where Q is a complete lattice.

Given an extension 〈Q, e〉 of P , an element of Q is called closed provided it

is the infimum in Q of e[F ] for some filter F of P . Dually an element of Q is

called open provided it is the supremum of e[I] for some ideal I of Q.

An extension 〈Q, e〉 of P is dense provided each element of Q is both the

supremum of all the closed elements below it and the infimum of all the open

elements above it. An extension 〈Q, e〉 of P is compact provided that whenever

D is a non-empty down-directed subset of P, U is a non-empty up-directed

subset of P , and
∧

Q D ≤
∨

Q U , then there are x ∈ D and y ∈ U with x ≤ y.

A canonical extension of P is any completion that is dense and compact. In

[1] it is proved that if a poset has a canonical extension, then it is unique up

to isomorphism, and that every poset has a canonical extension.

In this section, we use the duality between the categories P and TOP(P ) of

the previous section to show the existence of the canonical extension of a poset

from a topological viewpoint. The proof we present is a topological alternative

to the algebraic proof in [1], in a way similar to the proof of the existence of

a canonical extension for lattices given in [8] that is a topological alternative

to the purely algebraic proof supplied in [3].

Let X be a topological space. Recall that OF(X) denotes the family of all

open filters of X. We take the closure system Fsat(X) on X generated by

the family OF(X). That is, Fsat(X) is the collection of all subsets of X that

are intersections of open filters. We denote the associated closure operator of

Fsat(X) by fsat(·). So for every A ⊆ X, fsat(A) =
⋂
{F ∈ OF(X) : A ⊆ F}.

Then we have the complete lattice 〈Fsat(X),
⋂
,
∨
〉 where

∨
A = fsat(

⋃
A) for
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each A ⊆ Fsat(X), and moreover, KOF(X) ⊆ OF(X) ⊆ Fsat(X). So it is clear

that the lattice Fsat(X) is a completion of the poset PX = 〈KOF(X),⊆〉. The
elements of Fsat(X) are called F-saturated sets.

Let P be a poset. We will prove that Fsat(XP ) = 〈Fsat(XP ),
⋂
,
∨
〉 is the

canonical extension of P with the embedding ϕ : P → Fsat(XP ).

According to the terminology in [1], an element of Fsat(XP ) is a closed

element if it is the infimum in Fsat(XP ) of ϕ[F ] for some filter F of P . And

an element of Fsat(XP ) is an open element if it is the supremum in Fsat(XP )

of ϕ[H] for some ideal H of P .

Lemma 6.1. An element U ∈ Fsat(XP ) is a closed element if there is a filter

F of P such that U = ↑F in 〈Fi(P ),⊆〉. Similarly, U is an open element if

there exists an ideal H of P such that U = {G ∈ Fi(P ) : G ∩H �= ∅}.

Proof. First note that if F ∈ Fi(P ), then

↑F = {G ∈ Fi(P ) : F ⊆ G} =
⋂
{ϕ(a) : a ∈ F} =

⋂
ϕ[F ].

Thus, ↑F ∈ Fsat(XP ) and is closed. Now if U ∈ Fsat(XP ) is closed, then there

exists F ∈ Fi(P ) such that U =
⋂
ϕ[F ]. Then, U = ↑F .

Let H be an ideal of P . Then {G ∈ Fi(P ) : G ∩H �= ∅} =
⋃
ϕ[H]. Since

H is an ideal, ϕ[H] is up-directed. Thus,
∨
ϕ[H] = fsat(

⋃
ϕ[H]) =

⋃
ϕ[H].

Hence, {G ∈ Fi(P ) : G∩H �= ∅} ∈ Fsat(XP ) and is open. Now if U ∈ Fsat(XP )

is open, let H be an ideal of P such that we have U =
∨
ϕ[H]. Then we have

U = {G ∈ Fi(P ) : G ∩H �= ∅}. �

Lemma 6.2. If F is an open filter of XP , then there exists an ideal H of P

such that F =
∨
ϕ[H].

Proof. Let F be an open filter of XP . Thus, it is an up-set that is down-

directed, and since it is an open set, it is inaccessible by up-directed joins.

Let H := {a ∈ P : ↑a ∈ F}. We claim that H is an ideal of P . If a ∈ H

and b ≤ a ∈ P , then ↑a ∈ F and ↑a ⊆ ↑b. Hence, ↑b ∈ F and so b ∈ H.

Suppose now that a, b ∈ H, so that ↑a, ↑b ∈ F . There exists F ∈ F such

that F ⊆ ↑a, ↑b. Note that since F is a filter of P , the set {↑c : c ∈ F} is

up-directed and its join is F . Using that F is inaccessible by up-directed joins,

there exists c ∈ F such that ↑c ∈ F . It follows that a, b ≤ c ∈ H.

To conclude the proof, we show that F =
∨
ϕ[H]. First note that ϕ[H] is

up-directed because H is an ideal. Thus,
∨
ϕ[H] =

⋃
ϕ[H]. Let G ∈

⋃
ϕ[H].

So there exists a ∈ H such that a ∈ G. Hence, since ↑a ∈ F and ↑a ⊆ G,

we have G ∈ F . To prove the other inclusion, suppose that G ∈ F . Since

G =
∨
{↑c : c ∈ G} ∈ F and the set {↑c : c ∈ G} is up-directed, then there

is c0 ∈ G such that ↑c0 ∈ F . Therefore, c0 ∈ H and G ∈ ϕ(c0), so that

G ∈
⋃
ϕ[H]. �

Proposition 6.3. Let P be a poset. Then, the complete lattice Fsat(XP ) is

the canonical extension of the poset P (with the embedding ϕ).
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Proof. Density: Let U ∈ Fsat(XP ). First note that U is an up-set of the poset

〈Fi(P ),⊆〉 because it is an intersection of open filters of XP and these are

up-sets. Thus, U =
⋃
{↑F : F ∈ U}. Hence,

U = fsat(U) =
∨
{V ∈ Fsat(XP ) : V is a closed element and V ⊆ U}.

Now we prove that U =
⋂
{
∨
ϕ[H] : H is an ideal of P and U ⊆

∨
ϕ[H]},

that is, that U =
⋂
{V ∈ Fsat(XP ) : V is an open element and U ⊆ V }. One

inclusion is obvious; to prove the other inclusion, let G ∈ Fi(P ) be such that

G �∈ U . We find an ideal H of P such that U ⊆
∨
ϕ[H] and G �∈

∨
ϕ[H].

Since U ∈ Fsat(XP ), there is a family {Fi : i ∈ I} of open filters of XP such

that U =
⋂

i∈I Fi. Hence, there exists Fi such that G �∈ Fi. We consider the

set H := {a ∈ P : ↑a ∈ Fi}. By Lemma 6.2, we have Fi =
∨
ϕ[H]. Thus,

U ⊆
∨
ϕ[H] and G �∈

∨
ϕ[H].

Compactness: Let D be a non-empty down-directed subset of P and E a

non-empty up-directed subset of P such that
∧
ϕ[D] ⊆

∨
ϕ[E]. Then ϕ[E] is

up-directed, and therefore
∨
ϕ[E] =

⋃
ϕ[E]. Hence,

⋂
ϕ[D] ⊆

⋃
ϕ[E]. Let

F := {d ∈ P : ∃a ∈ D, a ≤ d}. This set is a filter of P and F ∈
⋂
ϕ[D]. Thus,

F ∈
⋃
ϕ[E]. Then there exists d ∈ E such that d ∈ F . Hence, there is a ∈ D

such that a ≤ d. This proves the compactness condition. �

7. The dual space of P ∂

Given a P-space X, we consider the Scott topology of the poset 〈OF(X),⊆〉.
We refer to the resulting space simply by OF(X). For every x ∈ X, we define

the set ψx := {F ∈ OF(X) : x ∈ F}.

Proposition 7.1. The family {ψx : x ∈ X} is a base for the space OF(X).

Proof. Let x ∈ X. First, we prove that ψx is a Scott open subset of OF(X). It

is clear that ψx is an up-set of OF(X). Now, let {Fi : i ∈ I} be an up-directed

family of open filters of X and suppose that
∨↑

Fi ∈ ψx. Since the family

{Fi : i ∈ I} is up-directed,
∨↑

Fi =
⋃
Fi. So x ∈ Fi for some i ∈ I. Then

{Fi : i ∈ I} ∩ ψx �= ∅. Hence, ψx is a Scott open set of the space OF(X).

To prove that the family {ψx : x ∈ X} is a base for OF(X), let U be a Scott

open set of the space OF(X) and let F ∈ U . Since X is a P-space,

F =
⋃
{↑a : a ∈ F ∩ Fin(X)} =

∨↑{↑a : a ∈ F ∩ Fin(X)}.

As U is inaccessible by up-directed joins, there exists a ∈ F ∩Fin(X) such that

↑a ∈ U . Since U is an up-set, we have F ∈ ψa ⊆ U . �

In [9], Moshier and Jipsen consider for an HMS-space X, the topology on

OF(X) generated by the family {ψx : x ∈ X} and then they show that this

family is a base. In our case, in the setting of posets, the proof that the family

{ψx : x ∈ X} is a base is completely different from the proof in [9]. Moreover,

we are showing that this family is a base for the Scott topology on OF(X).



468	 L. J. González and R. Jansana� Algebra Univers.14 L. J. González and R. Jansana Algebra univers.

In the next proposition, we show a relation between a P-space X and the

space OF(X). Consider the poset Fin(X) := 〈Fin(X),�〉, which is a sub-poset

of the space X with respect to the specialization order. So we can consider

the dual P-space XFin(X) = Fi(Fin(X)) of the poset Fin(X).

From the previous proposition, we know that the space OF(X) has the

family {ψx : x ∈ X} as a base, but since KOF(X) is a base for the space X,

we can take a smaller family as a base for the space OF(X); this base will be

{ψa : a ∈ Fin(X)}. To show this, let U be an open set of the space OF(X)

and let F ∈ U . So there is x ∈ X such that F ∈ ψx ⊆ U . Since x ∈ F and F

is an open set of X, there exists a ∈ Fin(X) such that x ∈ ↑a ⊆ F . Hence, we

obtain F ∈ ψa ⊆ U . We are ready to prove the following proposition.

Proposition 7.2. Let X be a P-space. Then the spaces XFin(X) and OF(X)

are homeomorphic.

Proof. We define the map α : XFin(X) → OF(X) by α(F ) :=
⋃
{↑a : a ∈ F} for

each F ∈ XFin(X). We show that α is a homeomorphism in several steps.

• α is well defined. Let F ∈ XFin(X). Since F ⊆ Fin(X), α(F ) is an open

subset of X and moreover, it is an up-set. Let x, y ∈ α(F ). So there are

a, b ∈ F such that x ∈ ↑a and y ∈ ↑b. Given that F is a filter of the poset

Fin(X), there is c ∈ F such that c � a, b. Then, c � x, y and c ∈ α(F ). Hence,

α(F ) ∈ OF(X).

• α is injective. Let F1, F2 ∈ XFin(X) and assume that α(F1) = α(F2). Since

F1 ⊆ α(F1), we have F1 ⊆ α(F2). Let x ∈ F1. So x ∈ α(F2) and this implies

that there exists a ∈ F2 such that x ∈ ↑a. Then x ∈ F2. Thus, F1 ⊆ F2.

Similarly, we can show that F2 ⊆ F1. Hence, F1 = F2.

• α is onto. Let G ∈ OF(X). We take F = G ∩ Fin(X). Let a, b ∈ Fin(X)

and suppose that a � b and a ∈ F . Since G is a filter of X, b ∈ G, and then

b ∈ F . Let a, b ∈ F . Since G is a filter, there is c ∈ G such that c � a, b. Given

that G is an open set of X, there exists c′ ∈ Fin(X) such that c ∈ ↑c′ ⊆ G.

So we have c′ ∈ G and c′ � c. Then c′ ∈ F and c′ � a, b. This implies

that F ∈ XFin(X). Finally, we need to show that α(F ) = G. Let x ∈ α(F ).

So there is a ∈ F such that a � x. Then a ∈ G, and thus x ∈ G. Hence,

α(F ) ⊆ G. Let x ∈ G. So there exists a ∈ Fin(X) such that x ∈ ↑a ⊆ G.

Then a ∈ G ∩ Fin(X) = F , and consequently x ∈ α(F ). Thus, G ⊆ α(F ).

Therefore, α(F ) = G.

• α is continuous. Let a ∈ Fin(X). We have that

F ∈ α−1[ψa] ⇐⇒ α(F ) ∈ ψa ⇐⇒ a ∈ α(F ) ⇐⇒ F ∈ ϕa.

Then α−1[ψa] is an open subset of the spaceXFin(X), and hence α is continuous.

Notice that here ϕa is restricted to the poset 〈Fin(X),�〉, that is, we have

ϕa = {F ∈ Fi(Fin(X)) : a ∈ F}.
• α is an open map. By the previous point, for a ∈ Fin(X), α−1[ψa] = ϕa.

Since we know that α is a bijection, we obtain ψa = α[α−1[ψa]] = α[ϕa].

Hence, α is open. This completes the proof. �
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It should be noted that by the previous proposition, for every P-space X,

the space OF(X) is a P-space.

Corollary 7.3. Let P be a poset. If X is the dual P-space of P , then the

P-space OF(X) is the dual P-space of the poset P ∂ .

Proof. Let X be a P-space. It is clear that KOF(X)∂ ∼= Fin(X). Then

Fi(KOF(X)∂) ∼= Fi(Fin(X)) ∼= OF(X).

Therefore, the P-space OF(X) is the dual of the poset KOF(X)∂ . �

Proposition 7.4. Let X be a P-space. Then x ∈ Fin(X) if and only if ψx is

compact.

Proof. Let x ∈ Fin(X). Notice that ψx = {F ∈ OF(X) : ↑x ⊆ F}. Then since

↑x ∈ OF(X), ψx is the compact open filter of the space OF(X) generated by ↑x.
Conversely, let x ∈ X and assume that ψx is compact. So ψx ∈ KOF(OF(X)).

Then there exists G ∈ OF(X) such that ψx = {F ∈ OF(X) : G ⊆ F}. Since

G ∈ ψx, x ∈ G. So we have ↑x ⊆ G. Now let a ∈ G and suppose that x �� a.

Thus, there is U ∈ KOF(X) such that x ∈ U and a /∈ U . Then we have U ∈ ψx,

and hence G � U , which is a contradiction. Then x � a. So we obtain that

G ⊆ ↑x. Therefore, G = ↑x and x ∈ Fin(X). �

Proposition 7.5. If X is a P-space, then the map η : X → OF(OF(X)) defined

by η(x) := ψx = {F ∈ OF(X) : x ∈ F} for every x ∈ X, is a homeomorphism.

8. Topological representation of quasi-monotone maps

Let P1, . . . , Pn+1 be posets. The main aim of this section is to characterize

topologically the maps j : P1×· · ·×Pn → Pn+1 that in each coordinate either

preserve or reverse the order. We will call such maps quasi-monotone maps.

If P is a poset and j : Pn → P is a quasi-monotone map, then we say that j

is an n-ary quasi-monotone map. In [1], a structure 〈P, (ji)i∈I〉, where P is a

poset and every ji is an ni-ary quasi-monotone map on P , is called a monotone

poset expansion.

For every quasi-monotone map j : P1 × · · · × Pn → Pn+1, there is a mono-

tonicity type ε = 〈ε1, . . . , εn〉 associated with j where for every i = 1, . . . , n,

εi = 1 or εi = ∂, depending on whether j preserves or reverses the order in the

coordinate i. If we let P εi
i = Pi or P

εi
i = P ∂

i , depending on whether εi = 1 or

εi = ∂, then the map j : P ε1
1 × · · · × P εn

n → Pn+1 is order-preserving.

To represent topologically quasi-monotone maps j : P1×· · ·×Pn → Pn+1 for

arbitrary posets P1, . . . , Pn+1, it is then enough to represent order-preserving

maps in each coordinate. Indeed, if ε = 〈ε1, . . . , εn〉 is the monotonicity type

associated with j, letting Xεk
k to be the dual space of P εk

k for 1 ≤ k ≤ n, we

will take as a representation of j : P1 × · · · × Pn → Pn+1 the representation

f : Xε1
1 × · · · × Xεn

n → Xn+1 of j considered as the order-preserving map

j : P ε1
1 × · · · × P εn

n → Pn+1.
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8.1. Product of P-spaces. Here we prove that the topological product

X1 × · · · ×Xn of a finite number of P-spaces is a P-space. The facts in the

following proposition are known and we omit their proofs.

Proposition 8.1. Let {Xi}i∈I be a non-empty family of topological spaces.

(1) If for every i ∈ I the space Xi is a T0-space, then
∏

i∈I Xi is T0.

(2) If for every i ∈ I the space Xi is sober, then
∏

i∈I Xi is a sober space.

Next we characterize the compact open filters of finite products of P-spaces.

Proposition 8.2. Let X1, . . . , Xn be P-spaces and let X = X1 × · · · × Xn.

Then KOF(X) = {↑x1 × · · · × ↑xn : x1 ∈ Fin(X1), . . . , xn ∈ Fin(Xn)}.

Proof. Let x1 ∈ Fin(X1), . . . , xn ∈ Fin(Xn) and let x = 〈x1, . . . , xn〉. It is easy
to see that ↑x = ↑x1 × · · · × ↑xn and since this last set is an open set of X,

x ∈ Fin(X). Thus, ↑x1 × · · · × ↑xn ∈ KOF(X). Let y = 〈y1, . . . , yn〉 ∈ Fin(X).

It is clear that ↑y = ↑y1 × · · · × ↑yn. Moreover, for every i ∈ {1, . . . , n},
πi[↑y] = ↑yi; therefore, ↑yi is open and then yi ∈ Fin(Xi). �

From the proof of the proposition, we have that for a finite number of P-

spaces X1, . . . , Xn, if X = X1 × · · · × Xn is their topological product space,

then an element x = 〈x1, . . . , xn〉 of X is finite if and only if each xi is finite

in the space Xi.

Theorem 8.3. Let X1, . . . , Xn be P-spaces and let X = X1 × · · · ×Xn. Then

X is a P-space.

Proof. For every i ∈ {1, . . . , n}, KOF(Xi) = {↑x : x ∈ Fin(Xi)} is a base

for Xi. Thus, from the previous proposition, it follows that KOF(X) is a base

for X. Moreover, since the product of sober spaces is sober, X is sober. Hence,

X is a P-space. �

The open filters of a finite product of P-spaces are characterized as follows:

Proposition 8.4. Let X1, . . . , Xn be P-spaces and let X = X1 × · · · × Xn.

Then OF(X) = {F1 × · · · × Fn : F1 ∈ OF(X1), . . . , Fn ∈ OF(Xn)}.

Proof. Let F1 ∈ OF(X1), . . . , Fn ∈ OF(Xn). Then F1 × · · ·×Fn is an open set

of X and it is easy to see that it is a filter. Assume now that F ∈ OF(X). Let

Fi = πi[F ] for every i ∈ {1, . . . , n}. Then Fi is an open filter of Xi. Moreover,

using that F is a filter, it is easy to check that F = F1 × · · · × Fn. �

Now we move to some considerations on the P-space dual of the direct

product of a finite number of posets. Let P1, . . . , Pn be posets and consider

their direct product P = P1 × · · · × Pn, whose order is given coordinatewise.

Note that the filters of P are the sets of the form F1 × · · · × Fn where Fi is a

filter of Pi for every i ∈ {1, . . . , n}.

Proposition 8.5. The P-spaces XP and XP1 × · · ·×XPn are homeomorphic.
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Proof. Define f : XP1
× · · · ×XPn

→ XP by f(〈F1, . . . , Fn〉) = F1 × · · · × Fn

for all 〈F1, . . . , Fn〉 ∈ XP1 × · · · × XPn . This map is clearly a bijection.

The compact open filters of XP are the sets of the form ϕ〈a1,...,an〉 with

〈a1, . . . , an〉 ∈ P and the compact open filters of XP1 × · · · × XPn are sets

of the form ϕa1
× · · · ×ϕan

with 〈a1, . . . , an〉 ∈ P . Let 〈a1, . . . , an〉 ∈ P . Then

it is easy to check that

f−1[ϕ〈a1,...,an〉] = {〈F1, . . . , Fn〉 : 〈a1, . . . , an〉 ∈ F1 × · · · × Fn}
= ϕa1

× · · · × ϕan
,

and hence a compact open filter of XP1
× · · · × XPn

. Similarly, we have

f [ϕa1 × · · · × ϕan ] = ϕ〈a1,...,an〉. Therefore, f is a continuous and open map.

We conclude that f is a homeomorphism. �

8.2. Quasi-monotone maps. In [9], Moshier and Jipsen present a topo-

logical representation of n-ary quasioperators. From the definition of n-ary

quasioperators, it clearly follows that they are n-ary quasi-monotone maps.

We apply the ideas developed in [9] to the poset setting to obtain a topologi-

cal representation of quasi-monotone maps as maps between P-spaces. Hence,

the topological representation of n-ary quasi-monotone maps in the setting of

posets that we develop in this section can be considered a generalization of

the topological representation for n-ary quasioperators in the setting of lattices

due to Moshier and Jipsen.

As we mentioned at the beginning of the section, to represent topologically

quasi-monotone maps, it is enough to represent order-preserving maps. Let

P1, . . . , Pn+1 be posets. Any map j : P1 × · · · × Pn → Pn+1 that is order-

preserving in each coordinate is an order-preserving map from the direct pro-

duct P1 × · · · ×Pn of the posets P1, . . . , Pn to the poset Pn+1. So, considering

also Proposition 8.5, it will be enough to represent order-preserving maps

between posets.

Let P,Q be posets and j : P → Q an order-preserving map. We define the

map fj : XP → XQ as follows:

fj(F ) = {a ∈ Q : ∃b ∈ F, j(b) ≤ a} = ↑j[F ] (8.1)

for every F ∈ XP . Let us see that f is well defined in the sense that its

range is included in XQ. Clearly, fj(F ) is an up-set. Let us see that it is

down-directed. Let a1, a2 ∈ fj(F ). Fix b1, b2 ∈ F such that j(b1) ≤ a1 and

j(b2) ≤ a2. Let c ∈ F be such that c ≤ b1, b2. Then j(c) ≤ j(b1), j(b2) and

thus, j(c) ≤ a1, a2 and j(c) ∈ fj(F ). Hence, fj(F ) is down-directed.

Proposition 8.6. The map fj is continuous.

Proof. Let U be a basic open subset of the space XQ. We know that by

Proposition 4.4, U = ϕa for some a ∈ Q. Notice that by definition of fj ,

F ∈ f−1
j [ϕa] ⇐⇒ fj(F ) ∈ ϕa ⇐⇒ a ∈ fj(F ) ⇐⇒ ∃b ∈ F (j(b) ≤ a).
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Let F ∈ f−1
j [ϕa]. So there exists b ∈ F such that j(b) ≤ a. Clearly, ϕb is an

open subset of the space XP and F ∈ ϕb. Next, we show that ϕb ⊆ f−1
j [ϕa].

Let G ∈ ϕb. So b ∈ G, and since j(b) ≤ a, then G ∈ f−1
j [ϕa]. Thus, f−1

j [ϕa]

is an open subset of the space XP , and therefore fj is continuous. �

Let X be a P-space. We define the binary relation � on X as follows: for

every x0, x1 ∈ X, x0 � x1 if and only if for some F ∈ OF(X) with x1 ∈ F ,

x0 ∈ G implies F ⊆ G for all G ∈ OF(X).

A map f : X → Y between P-spaces is strongly-continuous if it is continuous

and preserves the relation �, that is, x0 � x1 implies f(x0) � f(x1).

The next two propositions are easy consequences of the definition.

Proposition 8.7. Let X be a P-space and let x, y ∈ X. Then, x � y if

and only if for some a ∈ Fin(X) with y ∈ ↑a, x ∈ ↑b implies ↑a ⊆ ↑b for all

b ∈ Fin(X).

Proposition 8.8. Let X be a P-space. Then for every x ∈ X, we have x � x

if and only if x ∈ Fin(X).

The following proposition is a useful characterization of the relation � in

a product of a finite number of P-spaces.

Proposition 8.9. Let X1, . . . , Xn be P-spaces and let X = X1 × · · · ×Xn be

the space with the product topology. Let x, y ∈ X. Then,

x � y if and only if xi � yi for all i = 1, . . . , n.

Proof. First, we assume that x � y. So there exists F ∈ OF(X) such that

y ∈ F . Then for every i = 1, . . . , n, there exists Fi ∈ OF(Xi) such that

F = F1× · · ·×Fn. Let i ∈ {1, . . . , n}. Then yi ∈ Fi. Let now Gi ∈ OF(Xi) be

such that xi ∈ Gi. Fix Gj ∈ OF(Xj) such that xj ∈ Gj for every j ∈ {1, . . . , n}
different from i. Then x ∈ G = G1 × · · · × Gn ∈ OF(X). Therefore, F ⊆ G.

This implies that Fi ⊆ Gi. Hence, xi � yi.

Conversely, we assume that xi � yi for all i = 1, . . . , n. So, for each

i = 1, . . . , n, there exists ai ∈ Fin(Xi) such that yi ∈ ↑ai, and we have that

∀bi ∈ Fin(Xi)
(
xi ∈ ↑bi =⇒ ↑ai ⊆ ↑bi

)
. We define a := 〈a1, . . . , an〉 ∈ Fin(X).

Notice that y ∈ ↑a. Let b ∈ Fin(X) be such that x ∈ ↑b. Then for every

i = 1, . . . , n, bi ∈ Fin(Xi) and xi ∈ ↑bi. Thus, ↑ai ⊆ ↑bi for all i = 1, . . . , n,

and consequently ↑a ⊆ ↑b. Therefore, x � y. �

Remark 8.10. Let P be a poset and consider the dual P-space XP of P .

Then the relation � on XP reduces to

F � G ⇐⇒ ∃a ∈ P (F ⊆ ↑a ⊆ G).

Proposition 8.11. The map fj : XP → XQ is strongly-continuous.

Proof. By Proposition 8.6, it only remains to prove that fj preserves the re-

lation �. Let F,G ∈ XP be such that F � G. By the above remark, there

is a ∈ P such that F ⊆ ↑a ⊆ G. We take b := j(a) ∈ Q. Then by definition
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of fj and since the map j is order-preserving, fj(F ) ⊆ ↑b ⊆ fj(G). Hence,

fj(F ) � fj(G). �

To obtain the reverse construction, let X,Y be P-spaces and let f : X → Y

be a strongly-continuous map. The map jf : KOF(X) → KOF(Y ) is defined by

jf (↑x) = ↑f(x), (8.2)

for every x ∈ Fin(X). Notice that if x ∈ Fin(X), x � x. Then, given that f

preserves the relation �, f(x) � f(x), which implies that f(x) ∈ Fin(Y ). So

we have that jf is well defined.

Proposition 8.12. The map jf is order-preserving.

Proof. Let x1, x2 ∈ Fin(X) be such that ↑x1 ⊆ ↑x2. Then x2 � x1. Since f

is a continuous map, f is order-preserving (with respect to the specialization

order). Then f(x2) � f(x1). Thus, it follows that ↑f(x1) ⊆ ↑f(x2). Hence,

jf (↑x1) ⊆ jf (↑x2). Therefore, jf is order-preserving. �

We are in a position to show that the function that sends order-preserving

maps to strongly-continuous maps j �→ fj and the function that sends strongly-

continuous maps to order-preserving maps f �→ fj are inverses of one another.

Let j : P → Q be an order-preserving map and consider fj : XP → XQ

defined as in (8.1). Then we have the map jfj : KOF(XP ) → KOF(XQ) defined

as in (8.2). We want to show that the maps j and jfj are, essentially, the same.

Recall from Theorem 4.5 that ϕ : P → KOF(XP ) is an order isomorphism. So

we should prove that jfj (ϕP (a)) = ϕQ(j(a)) for all a ∈ P . That is, that the

the following diagram commutes:

P Q

KOF(XP ) KOF(XQ)

j

jfj

ϕP ϕQ

Let a ∈ P . First we observe, by definition of fj , that fj(a) = ↑j(a), and
moreover jfj (ϕP (a)) = ↑fj(↑a). Then for every F ∈ Fi(P ), we have

F ∈ jfj (ϕP (a)) ⇐⇒ fj(↑a) ⊆ F ⇐⇒ j(a) ∈ F ⇐⇒ F ∈ ϕQ(j(a)).

Conversely, we now consider a strongly-continuous map f : X → Y from

a P-spaces X to a P-space Y . So we have the map jf : PX → PY given by

(8.2). Then we consider the strongly-continuous map fjf : Fi(PX) → Fi(PY ),

and we prove that f and fjf are, essentially, the same maps. That is, we

prove that fjf (θX(x)) = θY (f(x)) for all x ∈ X, where θX : X → Fi(PX) is the

homeomorphism given by Theorem 5.4 and similarly for θY . In other words,

we prove that the following diagram commutes:
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X Y

Fi(PX) Fi(PY )

f

fjf

θX θY

Let x ∈ X and let ↑y ∈ KOF(Y ). First, we assume ↑y ∈ fjf (θX(x)). So

there exists ↑z ∈ θX(x) such that jf (↑z) ⊆ ↑y. Then ↑f(z) ⊆ ↑y, which

implies that f(z) ∈ ↑y. Since x ∈ ↑z and f is order-preserving, we have that

f(z) � f(x). Thus, f(x) ∈ ↑y. Hence, ↑y ∈ θY (f(x)).

Now we assume that ↑y ∈ θY (f(x)). So f(x) ∈ ↑y. Then x ∈ f−1[↑y], and
so there exists z ∈ Fin(X) such that x ∈ ↑z ⊆ f−1[↑y]. Thus, f [↑z] ⊆ ↑y.
Then ↑z ∈ θX(x) and f(z) ∈ ↑y. Therefore, ↑y ∈ fjf (θX(x)).

Let P1, . . . , Pn+1 be posets and let j : P1×· · ·×Pn → Pn+1 be a map that is

order-preserving in each coordinate. Let P be the direct product of P1, . . . , Pn.

Note that the filters of P are the sets of the form F1×· · ·×Fn where for every

i = 1, . . . , n, Fi ∈ Fi(Pi). So for every F1 × · · · × Fn ∈ Fi(P ),

fj(F1 × · · · × Fn) = {a ∈ Pn+1 : ∃b1 ∈ F1, . . . ,∃bn ∈ Fn, j(〈b1, . . . , bn〉) ≤ a}.

Thus we can obtain a map fj : XP1
× · · · ×XPn

→ XPn+1
defined by

fj(〈F1, . . . , Fn〉) = {a ∈ Pn+1 : ∃b1 ∈ F1, . . . ,∃bn ∈ Fn, j(〈b1, . . . , bn〉) ≤ a}.

This map is strongly-continuous, thanks to the homeomorphism between XP

and the product space XP1
× · · · ×XPn

.

Now let X1, . . . , Xn+1 be P-spaces and let f : X1 × · · · ×Xn → Xn+1 be a

strongly-continuous map. Let P be the poset of compact open filters of the

product space X1 × · · · ×Xn. This poset is isomorphic to the direct product

KOF(X1)× · · · × KOF(Xn). Consequently, we have the order-preserving map

jf : P → KOF(Xn+1). Using the isomorphism, we obtain a map

jf : KOF(X1)× · · · × KOF(Xn) → KOF(Xn+1),

which is order-preserving in each coordinate and is given by

jf (〈↑a1, . . . , ↑an〉) = ↑f(〈a1, . . . , an〉)

for every ai ∈ Fin(Xi) with i = 1, . . . , n.

9. The extension of a strongly-continuous map between P-spaces to

their lattices of F-saturated sets

Let X and Y be P-spaces. We show in this short section how to extend a

strongly-continuous map f from X to Y to maps from Fsat(X) to Fsat(Y ) in

such a way that the image of ↑x, with x ∈ X, is ↑f(x).
We will exploit the fact that according to the results in Section 6, for every

P-spaceX, Fsat(X) is (up to isomorphism) the canonical extension of KOF(X),
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with the identity as the embedding map, and the theory developed in [1] of

the extension of maps between posets to their canonical extensions.

Let f : X → Y be a strongly-continuous map; then jf : KOF(X) → KOF(Y )

is order-preserving. Thus, according to [1, Definition 3.2], the map jf has two

extensions (jf )
σ and (jf )

π from the canonical extension Fsat(X) of KOF(X)

to the canonical extension Fsat(Y ) of KOF(Y ). We provide a description in

our setting of the maps (jf )
σ and (jf )

π.

First, let us characterize, for a given P-space X, the open and closed ele-

ments of Fsat(X) taken as the canonical extension of KOF(X). According to

[1], a set U ∈ Fsat(X) is a closed element if there is a filter F of the poset

〈KOF(X),⊆〉 such that U =
⋂
F . And it is an open element if there is an

ideal I of the poset 〈KOF(X),⊆〉 such that U =
∨
I.

Note that I is an ideal of 〈KOF(X),⊆〉 if and only if there is FI ∈ OF(X)

such that I = {↑x : x ∈ FI} and is in Fsat(X),
∨
I = FI . Thus, the open

elements of Fsat(X) are the open filters of X. Now note that F is a filter of

〈KOF(X),⊆〉 if and only if there is an ideal I of Fin(X) with F = {↑y : y ∈ I}.
Thus, U ∈ Fsat(X) is an open element if and only if there exists F ∈ OF(X)

such that U =
∨
{↑x : x ∈ F} and it is a closed element if and only if there

exists an ideal I of Fin(X) such that U =
⋂
{↑x : x ∈ I}.

Proposition 9.1. Let X,Y be P-spaces and f : X → Y a strongly-continuous

map. Then for every U ∈ Fsat(X),

(1) (jf )
π(U) =

⋂{∨
{↑f(x) : x ∈ F ∩ Fin(X)} : F ∈ OF(X) U ⊆ F

}
.

(2) (jf )
σ(U) =

∨{⋂
{↑f(x) : x ∈ I} : I ∈ Id(Fin(X)),

⋂
{↑x : x ∈ I} ⊆ U

}
.

Proof. (1): By definition, if U ∈ Fsat(X), then U =
⋂
{F ∈ OF(X) : U ⊆ F}.

Thus, by definition of the map (jf )
π : Fsat(X) → Fsat(Y ),

(jf )
π(U) =

⋂{∨
{jf (↑x) : ↑x ∈ I} : I ∈ Id(KOF(X)) and U ⊆

∨
I
}
.

Hence, (jf )
π(U) =

⋂{∨
{↑f(x) : x ∈ F ∩ Fin(X)} : F ∈ OF(X) and U ⊆ F

}
.

(2) Similarly, by the definition of the map (jf )
σ : Fsat(X) → Fsat(Y ),

(jf )
σ(U) =

∨{⋂
{jf (↑x) : ↑x ∈ F} : F ∈ Fi(KOF(X)) and

⋂
F ⊆ U

}
.

Thus, (jf )
σ(U) =

∨{⋂
{↑f(x) : x ∈ I} : I ∈ Id(Fin(X)) and

⋂
{↑x : x ∈ I} ⊆ U

}
. �

10. Meet-semilattices and maps that preserve meet

In [8], Moshier and Jipsen develop a topological duality for meet-semilattices

with top element of which our duality for posets is a generalization. But our

duality also provides a duality for meet-semilattices in general. We proceed to

expound this duality and show how it restricts to the duality of Moshier and

Jipsen.
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Ameet-semilattice M is a poset such that the greatest lower bound exists for

every pair of elements of M . Equivalently, a meet-semilattice can be defined

as an algebra 〈M,∧〉 where M is a non-empty set and ∧ is a binary operation

that is idempotent, associative and commutative. We consider the category

of meet-semilattices (as posets) and meet-preserving maps. It is not hard to

check that this category is a full subcategory of P.
We say that a topological space X is an almost HMS-space, an AHMS-space

for short, if it satisfies the following conditions:

(1) X is sober;

(2) KOF(X) forms a base;

(3) KOF(X) is closed under finite non-empty intersections (that is, if we have

U, V ∈ KOF(X), then U ∩ V ∈ KOF(X)).

This notion of almost HMS-space is essentially due to Moshier and Jipsen [8].

Since they work with meet-semilattices with a top element, they require in

addition KOF(X) to be closed under intersections of arbitrary finite subsets

of KOF(X) or, equivalently, that X has a least element with respect to spe-

cialization order. Moshier and Jipsen call their spaces HMS-spaces in honor

of Hofmann, Mislove and Stralka.

It is clear that every almost HMS-space is a P-space. Thus, we may con-

sider the full subcategory AHMS of TOP(P ) with objects the almost HMS-

spaces (and hence with morphisms the F-continuous functions between them).

The full subcategory HMS of AHMS of the HMS-spaces is the category that

Moshier and Jipsen prove in [8] to be dually equivalent to the category of meet-

semilattices with top element and meet-preserving maps that also preserve the

top element.

If we apply the duality for posets given in Theorem 5.5 to the full subcate-

gory of meet-semilattices we obtain, taking into account Remark 4.6, that this

category is dual to the category AHMS and if we apply that theorem to the

category of meet-semilattices with top element, we obtain, again taking into

account Remark 4.6, the duality given by Moshier and Jipsen between that

category and the category of HMS-spaces.

Now, we restrict our attention to those maps j : M1 × · · · ×Mn → Mn+1,

where M1, . . . ,Mn+1 are meet-semilattices that are meet-preserving in each

coordinate. We apply the topological representation presented in Subsection

8.2 to the map j. First, observe that if M is a meet-semilattice and F1, F2 are

filters of M , then the filter

F1 ∨ F2 := {a ∈ M : b1 ∧ b2 ≤ a for some b1 ∈ F1 and b2 ∈ F2}

is the least upper bound of F1 and F2 in Fi(M) with respect to inclusion order.

Hence, using the duality between meet-semilattices and almost HMS-spaces,

we have that every almost HMS-space X is a join-semilattice with respect to

specialization order.
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Proposition 10.1. Let M1, . . . ,Mn,Mn+1 be meet-semilattices. The maps

j : M1 × · · · × Mn → Mn+1 that preserve meets in each coordinate are topo-

logically represented by the maps f : XM1
× · · · × XMn

→ XMn+1
that are

strongly-continuous and preserve joins in each coordinate (with respect to the

specialization order).

Proof. Let M1, . . . ,Mn+1 be meet-semilattices and j : M1×· · ·×Mn → Mn+1

a map that preserves meets in each coordinate. It is clear that j is order-

preserving. We thus define the map fj : XM1 × · · · × XMn → XMn+1 (where

XMi
is the dual almost HMS-space of the meet-semilatticeMi) as in Subsection

8.2. It only remains to prove that fj preserves joins in each coordinate. Let

H,G ∈ Fi(M1) and Fi ∈ Fi(Mi) for every i = 2, . . . , n. We need to prove that

fj(〈H ∨G,F2, . . . , Fn〉) = fj(〈H,F2, . . . , Fn〉) ∨ fj(〈G,F2, . . . , Fn〉).

Let a ∈ fj(〈H ∨G,F2, . . . , Fn〉). Therefore, j(〈a1, b2, . . . , bn〉) ≤ a for some

a1 ∈ H ∨G and b2 ∈ F2, . . . , bn ∈ Fn. Then there exist h ∈ H and g ∈ G such

that h ∧ g ≤ a1. Thus, we have j(〈h ∧ g, b2, . . . , bn〉) ≤ j(〈a1, b2, . . . , bn〉) ≤ a,

and since j preserves meets in each coordinate, we have

j(〈h, b2, . . . , bn〉) ∧ j(〈g, b2, . . . , bn〉) ≤ a.

Moreover, it is clear that we have both j(〈h, b2, . . . , bn〉) ∈ fj(〈H,F2, . . . , Fn〉)
and j(〈g, b2, . . . , bn〉) ∈ fj(〈G,F2, . . . , Fn〉). Hence,

a ∈ fj(〈H,F2, . . . , Fn〉) ∨ fj(〈G,F2, . . . , Fn〉).

On the other hand, if a ∈ fj(〈H,F2, . . . , Fn〉) ∨ fj(〈G,F2, . . . , Fn〉), then
there exist h ∈ fj(〈H,F2, . . . , Fn〉) and g ∈ fj(〈G,F2, . . . , Fn〉) with h∧ g ≤ a.

Thus, by definition of fj , we obtain j(〈h1, b2, . . . , bn〉) ≤ h for some h1 ∈ H

and bi ∈ Fi for i = 2, . . . , n, and j(〈g1, b′2, . . . , b′n〉) ≤ g for some g1 ∈ G and

b′i ∈ Fi for i = 2, . . . , n. Now, for each 2 ≤ i ≤ n, we put ci := bi ∧ b′i. We note

that ci ∈ Fi for all i = 2, . . . , n. Then

j(〈h1, c2, . . . , cn〉) ≤ h and j(〈g1, c2, . . . , cn〉) ≤ g.

So from the previous inequalities and since the map j preserves meet in each

argument, we have j(〈h1 ∧ g1, c2, . . . , cn〉) ≤ h ∧ g ≤ a. This implies

a ∈ fj(〈H ∨G,F2, . . . , Fn〉).

Now let X1, . . . , Xn+1 be almost HMS-spaces and let f : X1×· · ·×Xn → Xn+1

be a strongly-continuous map that preserves joins in each coordinate (with

respect to the specialization order). We consider the map

jf : KOF(X1)× · · · × KOF(Xn) → KOF(Xn+1).

Let ↑a, ↑b ∈ KOF(X1), ↑a2 ∈ KOF(X2), . . . , ↑an ∈ KOF(Xn). Then,

fj(〈↑a ∩ ↑b, ↑a2, . . . , ↑an〉) = ↑f(〈a � b, a2, . . . , an〉)
= ↑(f(〈a, a2, . . . , an〉) � f(〈b, a2, . . . , an〉))
= ↑f(〈a, a2, . . . , an〉) ∩ ↑f(〈b, a2, . . . , an〉).
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The result follows similarly for the rest of the coordinates. It follows that fj
preserve meets in each coordinate. �
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